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Abstract The level set and density methods for topol-

ogy optimization are often perceived as two very dif-

ferent approaches. This has to some extent led to two

competing research directions working in parallel with

only little overlap and knowledge exchange. In this pa-

per we conjecture that this is a misconception and that

the overlap and similarities are far greater than the dif-

ferences. To verify this claim, we employ, without signif-

icant modifications, many of the base ingredients from

the density method to construct a crisp interface level

set optimization approach using a simple cut element

method. That is, we use the same design field repre-

sentation, the same projection filters, the same opti-

mizer and the same so-called robust approach as used

in density based optimization for length-scale control.

The only noticeable difference lies in the finite element
and sensitivity analysis, here based on a cut element

method, which provides an accurate tool to model arbi-

trary, crisp interfaces on a structured mesh based on the

thresholding of a level set - or density - field. The pre-

sented work includes a heuristic hole generation scheme

and we demonstrate the design approach on several

numerical examples covering compliance minimization

and a compliant force inverter. Finally, we provide our

Matlab code, downloadable from www.topopt.dtu.dk,

to facilitate further extension of the proposed method

to e.g. multiphysics problems.
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1 Introduction

Since its introduction in the late 1980’s (Bendsøe and

Kikuchi 1988) the material distribution method, known

as topology optimization, has shifted from an academic

research discipline to an important and commonly used

tool in many industries. In engineering it is used for the

design of structural components e.g. in aerospace and

automotive industries (Bendsøe and Sigmund 2004),

while many architects and industrial designers use it

as inspiration (Beghini et al. 2014). The success of the
design methodology has led to its application in several

other physical disciplines such as fluid dynamics (Bor-

rvall and Petersson 2003; Andreasen et al. 2009; Dilgen

et al. 2018), acoustics (Dühring et al. 2008; Christiansen

and Sigmund 2016), MEMS devices (Larsen et al. 1997;

Sigmund 2001b), large-scale and giga-resolution design

(Evgrafov et al. 2008; Aage et al. 2017) and even as

interactive educational tools (Aage et al. 2013; Nobel-

Jørgensen et al. 2016). As a consequence of the vast

popularity of the design method, a large number of

variants exist in the literature, of which, the two dom-

inant ones are the density based (Bendsøe 1989; Zhou

and Rozvany 1991; Wang et al. 2011; Sigmund and

Maute 2013) and the level set based approaches (Os-

her and Sethian 1988; Sethian and Wiegmann 2000;

Wang et al. 2003; Van Dijk et al. 2013). Within each

of the two major approaches there exist a multitude

of different directions. For example, the term level set

topology optimization is used for methods that employ

an ersatz material model c.f. Fig 1(c) (Allaire et al.
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2004; Wang and Wang 2006); methods that use exten-

sive remeshing and exact boundary tracking, c.f. Fig.

1(b) (Allaire et al. 2013); methods that perform the

design update using mathematical programming (Van

Miegroet and Duysinx 2007; Kreissl and Maute 2012)

and those that update the design by time-stepping an

advection-diffusion type equation (Allaire et al. 2004;

Chen et al. 2008). For density methods, both nodal and

element-wise design representations are employed and

there exist several approaches to performing the design

update, e.g. BESO (Querin et al. 1998) and mathemat-

ical programming. As a result, the number of variations

are numerous, and mentioning all is outside the scope of

this paper. Despite their different mathematical formu-

lations and numerical implementations, we argue that

they share more similarities than differences (as also

pointed out in e.g. Sigmund and Maute (2013)). The

main similarity, and a common trade for all successful

methods, both level set and density based, is that they

are based on sensitivity information (Sigmund 2011). In

this work we focus solely on the transition from a den-

sity representation to a level set based formulation, and

show that this only requires an update of the underly-

ing finite element analysis and minor modification to

the sensitivity computations. All other aspects remain

exactly as those used in density methods.

Depending on the physics at hand, the need for

an explicit boundary representation may be crucial for

the successful application of structural optimization.

For example, the works (Sigmund and Clausen 2007;

Yoon et al. 2007; Lundgaard et al. 2018) present density

based methods in which the interface is of primary im-

portance and all illustrate the difficulties in introducing

the appropriate interface conditions using a density rep-

resentation. Therefore, methods capable of an accurate

representation of such conditions are of high interest to

the community. To realize the accurate modelling of a

crisp boundary we employ a cut element method. The

proposed method can, in general terms, be viewed as

a subset of XFEM (Daux et al. 2000; Belytschko et al.

2003), CutFEM (Hansbo and Hansbo 2002; Burman

et al. 2014) or the Finite Cell method (Düster et al.

2008) if no enrichments or stabilization is used, and if

the entire background domain is modelled at all times.

In other words, the proposed cut element approach al-

lows for a crisp boundary representation while working

on a fixed structured background mesh with constant

degree of freedom (dof) numbering, c.f. Fig. 1(d). As the

proposed cut element approach does not require the in-

troduction of any additional enrichment dofs, it is well

suited for large-scale topology optimization in a paral-

lel environment, since the domain decomposition and

dof numbering remains constant. This is achieved by

introducing a contrast parameter to the void domain,

similar to standard SIMP topology optimization and,

to some extend, the Finite Cell method(Düster et al.

2008).

Within the field of level set based structural opti-

mization, several works have been published using a

similar modelling technique to that presented here. For

example, in Van Miegroet and Duysinx (2007) the au-

thors present a similar XFEM level set method, with

the major difference that the void domain is omitted

from the analysis. More closely related to this study is

the work of Wei et al. (2010) which employs an XFEM

finite element technique similar to that presented here.

However, their method differs in the design field repre-

sentation, which uses radial basis functions, and in the

way the regularization is introduced to the design prob-

lem. More recent publications include the work of Vil-

lanueva and Maute (2017) which utilize classical XFEM

with enrichments. Furthermore, the ghost penalty sta-

bilized CutFEM method by Burman et al. (2014) has

been used for level set shape optimization using an

advection-diffusion design update in Burman et al. (2018)

and Bernland et al. (2018), and based on an optimality

criteria in Burman et al. (2019).

In this paper we present a generalized shape and

topology optimization approach, in which, we utilize

well-known and thoroughly tested tools from the den-

sity method to construct a crisp interface level set type

design method. That is, from the density methods we

employ the design field representation, image process-

ing filters for regularization (Sigmund and Torquato

1996; Bourdin 2001; Guest et al. 2004) and the so-

called robust approach (Sigmund 2009; Wang et al.

2011) to ensure a minimum feature size. The result-

ing optimization problem is solved by mathematical

programming using the Method of Moving Asymptotes

(MMA) (Svanberg 1987). The mathematical design field

is introduced as a nodal field, which after a series of fil-

ters and projections is mapped to a level set field. Thus,

there is a clear link between the between the nodal den-

sity representation and the level set interpretation. This

approach allows us to introduce length scale control,

and hence robustness, to the design problem using the

well-known robust formulation from Wang et al. (2011).

We remark that other length-scale approaches orig-

inally developed for density methods already have been

employed for level set optimization, e.g. the geomet-

ric constraint of Zhou et al. (2015) is used by Jansen

(2018). It is also important to mention that other fea-

ture size approaches exist which are especially devel-

oped for level set methods c.f. Chen et al. (2008), Da-

pogny et al. (2017) and Yamada (2019), which uses an

energy method, a distance penalization and a fictitious
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Fig. 1 Illustration of different ways to represent an hourglass type geometry in structural optimization. Plot (a) show the
true geometry and (b) shows a body fitted mesh of the hourglass. In (c) the standard ersatz material / density model is shown,
while (d) shows the cut element approach where the cuts are highlighted in blue.

physical model, respectively. An alternative to feature

size control is to include uncertainty in loads, geom-

etry and material parameters. This has been studied

for density methods in (Schevenels et al. 2011) and for

level set methods in (Chen et al. 2010; Chen and Chen

2011). We remark that this is often also termed robust

design, however, in this work robust refers to designs

that are insensitive to uniform over and under etching.

To summarize the contributions to the field of struc-

tural optimization, this paper presents; 1) a robust level

set formulation for compliance minimization with con-

trollable length scale, 2) a level set optimization formu-

lation based on density method ideas and tools, 3) a

level set formulation capable of solving mechanism de-

sign problems such as the compliant force inverter and

4) a simple, engineering take on the implementation of

a cut element methodology.

Finally, we remark that although the motivation

for this work stems from problems that require a high

degree of accuracy in its interface representation, we

only present numerical examples based on simpler and

well known optimization problems from solid mechan-

ics. Hence, it is not the purpose of this paper to present

a faster and more efficient method than the density

method for this specific class of problems. The goal is

rather to demonstrate how little effort is required to go

from a density method to a level set method.

The remainder of the paper is organized as follows.

First we present the cut element method used to solve

the linear elasticity equations. Next, the design repre-

sentation and the image processing filtering schemes

are introduced. This is followed by a step by step pre-

sentation of the overall optimization procedure. The

methodology is then applied to several numerical ex-

amples after which the findings are summarized and

discussed. To facilitate an easy step into optimization

using cut elements for researchers in the community we

provide the base code for download from our webpage

www.topopt.dtu.dk ready for multiphysics extensions.

2 Physical and numerical model

Since the purpose of this work is to demonstrate and

highlight the adaption of density based techniques into

a level set approach, the physics is chosen as the ori-

gin of structural optimization, namely, linear elasticity.

More specifically, we consider linear elasticity under an

isotropic, plane stress assumption for which the govern-

ing equations and constitutive law is given as

∇ · σ = 0 in Ω (1)

σn = t in ΓN (2)

u = u∗ in ΓD (3)

σ = Cε

ε =
1

2

(
∇u+∇uT

)
where σ, ε, and u are the Cauchy stress, strain and dis-

placement, respectively and C is the plane stress consti-

tutive law (Cook et al. 2002). The load and boundary

conditions are comprised of surface tractions, t, pre-

scribed displacements u∗ and point loads.

The choice of numerical strategy for the governing

equations are, within the context of structural opti-

mization, most often determined by the type of opti-

mization employed. For example, in classical shape op-

timization the domain is most often discretized by a

body fitted mesh as seen in Figure 1(b). This provides

an accurate modelling of the physics at the price of

repeated and expensive re-meshing or mesh updating

schemes, e.g. (Allaire et al. 2014; Christiansen et al.

2014). Though this approach is highly accurate, it can

become cumbersome when performing large-scale, par-

allel computations. On the other hand, in classical den-

sity based topology optimization the geometry is of-

ten mapped to a structured background mesh, c.f Fig.

1(c), which in turn means that both structural and void

phases must be modelled. Here, the two-phase model

is handled by introducing an artificial stiffness in the
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void region such that Esolid � Evoid. This results in a

so-called immersed boundary method which makes the

book keeping easier and eliminates the need for remesh-

ing. However, it comes at the prize of reduced accu-

racy in the modelling of the interface between solid and

void, either due to the presence of intermediate densi-

ties (ersatz material model) or by introducing a jagged

or stair-cased interface. This can cause issues with the

application of pressure loads, traction forces and other

boundary dependent quantities.

In this work we adapt a crisp boundary method sim-

ilar to Finite Cell method, and to some extend also the

CutFEM and XFEM methods for material/void mod-

elling. We choose the term cut element method for this

modelling approach, as this name implies elements are

simply cut and that no enrichments or stabilization

terms are introduced. In summary, we introduce a fixed,

structured background mesh using linear quadrilaterals

and allow for an exact boundary representation, c.f Fig.

1(d), by triangulation and careful integration of the el-

ements containing the immersed boundary.

2.1 Discretization

The cut element formulation is obtained by discretizing

the weak form of the governing equations in (1)-(3) and

at the same time introducing an indicator field α(x),

which is independent of the underlying mesh. The in-

dicator function is constructed such that a point which

is inside Ωs will yield α(x) = 1 while in Ωv is assigned

α(x) = 10−9. This is seemingly very similar to the stan-

dard density method, however, it is important to note

that the cut element method does not employ a stan-

dard ersatz material model by averaging nodal or ele-

ment density variables. Instead it ensures, by the careful

integration presented in section 2.2, that the solid do-

main is modelled exactly such that the result will coin-

cide precisely (down to discretization error) with results

obtained by modelling only the solid phase. In turn,

this also means that the solution in the fictitious region

can - in principle - take on any value needed to ensure

the accuracy of the immersed body. This is an impor-

tant property of the method and has the following ef-

fect when considering multiple material phases or mul-

tiple physics. Each material phase, or physical model,

requires its own complete background mesh to allow for

an accurate model description of e.g. jumps in material

coefficients, which means that the total number of dofs

becomes a multiple of the chosen material phases or

included physics. In other words, this approach is not

monolithic.

Following the proposed cut element approach, a dis-

crete weak form of (1)-(3) is obtained as

nN∑
e

∫
Ωe

α(x)ε(ve) : σ(ue)dΩ−
nM∑
e

∫
Γ e
N

ve ·tdΓ = 0 (4)

where nN is the number of elements in the mesh, nM
is the number of traction boundary elements, ve is the

element test function and : refers to the double-dot-

product. Throughout the presented work we use 4-node

quadrilateral elements with linear Lagrange shape func-

tions for the background mesh. After the application of

a standard finite element assembly operator, one arrives

at the following linear system of equations

nN∑
e

ke (α(x)) ue =

nM∑
e

fe ⇒ K(α)u = F (5)

The element matrix and traction load vector is ob-

tained by numerical integration using standard Gaus-

sian quadrature (Cook et al. 2002). In the following

we assume, without loss of generality, that all traction

forces are applied to interfaces that coincides with the

boundaries of the underlying mesh. Thus, only the ele-

ments intersected by the immersed boundary needs to

be treated using the cut element approach. In order to

present the element integration scheme in a single, uni-

fied mathematical description capable of covering both

quadrilaterals (background mesh) and triangles (cut el-

ements), we chose to collect each pair of quadrature

points in a list, instead of the double sum most often

used for quadrilateral elements (Cook et al. 2002), i.e.

ke =

nIP∑
i=1

αiB(ξqi , η
q
i )
TCB(ξqi , η

q
i )Wi (6)

where (ξqi , η
q
i ) are the i’th set of quadrature points.

The remaining parts αi, B(ξqi , η
q
i ) and Wi are the in-

dicator function, strain-displacement matrix, and the

combined weight factor at integration point i, respec-

tively. C is the plane stress constitutive matrix, which is

kept constant for all integration points. The superscript

(·)q refers to the Gauss point belonging to a quadri-

lateral iso-parametric element and is included to allow

for a transparent formulation which later will include

the cut (i.e. triangular) element integration. The in-

teger nIP refers to the number of integration coordi-

nates in the element which, for completeness, are stated

here for a bilinear quadrilateral element requiring 4

sets of points: (ξqi , η
q
i ) = (±1/

√
3,±1/

√
3) with weights

wqξi = wqηi = 1. Thus, the weight factor for the quadri-

lateral element is given by

Wi = wqξiw
q
ηidet[Jq(ξqi , η

q
i )] (7)
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Fig. 2 Graphical representation of the cut-element integration scheme. The background element is cut by the blue line and a
triangulation is performed, resulting in four sub-triangles. The integration points for the cut element are then obtained based
on the quadrature points of the isoparametric triangular sub-elements, which are mapped back to the reference quadrilateral
element. Each integration point is weighted by the relative area of the sub-element.

We remark, that for all elements which are com-

pletely in the solid or void regions, the presented in-

tegration scheme is exactly the same as that used in

classical density based topology optimization, c.f. (Sig-

mund 2001a). The only difference appears at the cut

elements which are treated separately in Sections 2.2

and 3.2. Finally, throughout the presented work we en-

force Dirichlet boundary conditions and point loads by

aligning the background mesh and the points of interest

by construction. However, arbitrary conditions can be

enforced using Nitsche’s method (Nitsche 1971), though

this is deemed outside the scope of this manuscript.

2.2 Cut element integration

The accuracy of the cut element approach relies on a

special integration scheme applied to all cut elements

in the mesh, c.f. the elements marked with a blue out-

line in Fig. 1(d). First all the cut elements are identified

and then triangulated individually as shown for a single

element in Fig. 2(left) where the blue line refers to the

cut. Once the element triangulation is obtained, the cut

element scheme consists of mapping the three triangu-

lar Gauss points back into the reference quadrilateral

element as shown in the Fig. 2(right), computing a mod-

ified weight relative to the area of the sub-triangle and

performing the integration scheme from eq. (6) with the

appropriate αi. This process is repeated for each sub-

triangle of the cut element and their contributions are

summed to yield the element stiffness matrix. Thus, for

an element with a single cut, four triangles appear re-

sulting in a total of 12 integration points. For the rare

case of double-cut elements six triangles would appear

resulting in 18 integration points. Finally we emphasize

that the size of the resulting element stiffness matrix re-

mains 8 by 8 for the four node reference quadrilateral.

To summarize, the only thing needed to perform

the cut element integration is the mapping from the

sub-triangle to the reference quadrilateral. This allows

for all operations to be performed in the iso-parametric

space assuming that the triangulation is available in lo-

cal coordinates, c.f. section 3.2. The coordinates span-

ning each sub-triangle are denoted by (vti , r
t
i), where su-

perscript t refers to the triangle and i ∈ {1, 2, 3}. The

position of the quadrature points in the local quadri-

lateral, can now be obtained using the shape function

for a linear triangle, i.e.

ξqi = vt1(1− ξti − ηti) + vt2ξ
t
i + vt3η

t
i (8)

ηqi = rt1(1− ξti − ηti) + rt2ξ
t
i + rt3η

t
i (9)

The local quadrature points for a linear triangle are

given by ξt = { 16 ,
2
3 ,

1
6} and ηt = { 16 ,

1
6 ,

2
3}. Finally, the

weight used for each integration point in the quadri-

lateral must be modified to include the dependence of

the triangular weights wt = { 13 ,
1
3 ,

1
3} as well as the area

ratio between the triangle and the reference element i.e.

Wi = wtidet[J t(ξti , η
t
i)] = wtiA

t
qdet[Jq(ξqi , η

q
i )] (10)

where det[J t(ξti , η
t
i)] refers to the determinant of the

Jacobian for the triangular element and Atq is the area

of the considered triangle in the local quadrilateral co-

ordinate system. This means that the sum of all Atq’s

in a cut element is 4 due to the construction of the iso-

parametric quadrilateral element. To ease implementa-

tion we employ the right hand side of eq. (10) in the

presented work, since this alleviates the need to com-

pute the coordinates of the sub triangles, i.e. points

(xti, y
t
i) in Fig. 2.

It should be noted that pure solid and void element

matrices can be pre-computed as in density based meth-

ods. Only the cut elements must be integrated at every

optimization iteration both for analysis and sensitiv-

ity computation. This leaves a slightly higher compu-

tational cost per optimization iteration, which may be

alleviated by compiling the element integration routines

using e.g. MEX in Matlab. In general we have observed
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Fig. 3 Cantilever model problem used to demonstrate the
cut element approach. The dimensions are as stated in the
figure and the cantilever is subjected to a gravitational load
with g = {0,−1}. The problem is solved on a 4 by 3 do-
main with a background mesh of 43×32 elements for various
positions of the cantilever.

that the extra cost is by no means excessive, and that

most time is still spend on solving the equation system.

2.3 Model verification

To demonstrate the validity of the cut element method

for arbitrary element intersections we use the model

cantilever problem with dimension as sketched in Fig.

3 loaded by a gravitational force of g = {0,−1}. The

idea is to let the inclined cantilever move through a

background mesh of size 4 by 3, discretized by 43× 32

elements. The odd numbers are chosen to minimize the

risk of repeating the same cut situations for every anal-

ysis. The cantilever is then moved from y=0.3438 to

y=1.7575 in 63 step and for each analysis the compli-

ance is computed. Fig. 4 shows the displacement mag-

nitude at two instances, and the relative error is shown

in Fig. 5. The maximum relative error in compliance is

found to be 1.17 × 10−4 and we note that this num-

ber goes down with mesh refinement. Although the

presented work solely uses direct methods for the lin-

ear solves, we also investigated the condition number

of the system matrices and found that these vary be-

tween 1.5 × 1012 and 3.5 × 1012. We remark, that the

condition numbers did not follow the same pattern as

the compliance variations in Fig. 5. When compared

to the condition numbers encountered in density based

immersed boundary methods (using top88.m), we find

that these are of the same order. This means that the

efficient parallel preconditioner presented in e.g. Amir

et al. (2014) also works excellent for the presented cut

element method.

3 Design parameterization

The design parametrization is introduced to the prob-

lem as a scalar nodal design field s ∈ [0; 1], exactly

Fig. 4 Displacement field for two positions of the cantilever
from Fig. 3 in a large, fixed background mesh.

Fig. 5 Error log10(ε) of the relative error in the compliance
for 63 different cantilever positions along the y-axis, c.f. Fig.
3.

as done in nodal density methods, e.g. (Guest et al.

2004). A generic example is shown in the top left of

Fig. 6, which also depicts the mapping and filter oper-

ations that lead to the physical level set field used for

the finite element analysis. The interface between solid
and void is from here on defined as the zero contour of

the level set field, such that φi > 0 refers to solid and

φi < 0 to void. In the following sections we introduce

the filter operations, cut element triangulation and de-

sign sensitivity calculation, respectively.

3.1 Projection filter

If a linear mapping is used to map the design variables

to the level set values, the support for the level set is

very compact and the level set function may oscillate

and small, localized features would appear. This can

partly be alleviated by the introduction of a regulariza-

tion scheme, i.e. the smoothing filters known from den-

sity based topology optimization (Bourdin 2001). This

increases the support of the level set field and results in

a smoother boundary representation as well as a more

stable optimization process. The convolution type filter
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Design, s

F(s)

Filtered design, s̃

Mapped project erode, φe

M(He(F(s)))

Mapped project dilate, φd

M(Hd(F(s)))

Mapped project blue-print, φb

M(Hb(F(s)))

Erode realization

Dilate realization

Blue-print realization

Fig. 6 Overview of the design parametrization. Nodal design variable field s, filtered field s̃, design projected and mapped to
level set for three realizations and finally the mesh with visualization of the sub-triangles in the cut-elements.

can be expressed as

s̃i =

∑
j∈Ni,j

sjw(xj)∑
j∈Ni,j

w(xj)
⇒ s̃ = F(s) (11)

where Ni,j is the neighborhood set of nodes within

the filter radius R and w(xj) is the linear weight func-

tion between two nodal points xj and xi, i.e.

w(xj) = R− |xj − xi| (12)

To introduce the possibility of operating with mul-

tiple physical realizations using a single design field,

and to suppress small localized features, a projection

filter is introduced. This filter is identical to the - by

now - classical robust formulation from density meth-

ods (Wang et al. 2011; Lazarov et al. 2016). Considering

a smoothed design, the projection of this design can be

obtained using a smoothed approximation of the Heav-

iside function

ŝ = H(F(s)) =
tanh(βη) + tanh(β(s̃− η))

tanh(βη) + tanh(β(1− η))
(13)

where η is the threshold value and β is the steepness

of the projection. For multiple projections of the same

design we may refer to the eroded, blue-print and dilated

realizations using subscripts e,b,d and corresponding

threshold values ηd ≤ ηb ≤ ηe, respectively. For the

numerical examples we use a variable off-set ∆η which

yields the erode and dilate threshold values as ηe =

ηb +∆η and ηd = ηb −∆η, respectively.

After the filter and projection operators, the phys-

ical level set is obtained by a linear mapping of the

design field, which ensures that the level set is bounded

by φ ∈ [φmin;φmax] yielding

φ =M(H(F(s)))= φmin + (φmax − φmin)ŝ (14)

The interval of the physical level set is chosen as φ ∈
[−h/2;h/2], where h is the side length of an element,

following the work of (Sharma and Maute 2017). Also,

this scaling has the beneficial effect of rendering the

design update mesh independent.

3.2 Triangulation of cut elements

The only step missing to complete the proposed level set

based modelling is the triangulation of the cut elements.

In this work the cut elements are triangulated directly

based on the nodal design information using the march-

ing squares algorithm, which is a straight forward sim-

plification of the marching cubes algorithm by Lorensen

and Cline (1987). That is, based on the nodal values of

the level set field, we employ the marching squares algo-

rithm to obtain the positions of the cut element edges in

local quadrilateral coordinates. This corresponds to the

two points (vt1, r
t
1) and (vt3, r

t
3) shown in Fig. 2(right).

Having obtained the positions of the cuts, the subse-

quent triangulation is performed without calling an ex-

ternal mesher. This is viable due to the simplicity of

the marching squares algorithm that only contains 16

unique scenarios for the cuts. An illustrative example

of the cut process is shown in Fig. 7 where only the

top left node has a positive level set value whereas the

remaining three are negative. The algorithm computes
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the triangulation and returns intersection points with

the parent quadrilateral edges, connectivity and phase

information for the triangulation. This means that the

resulting representation of the boundary is piece-wise

linear and therefore that the resolution of the back-

ground mesh has a significant influence on the ability

to represent fine details.

Finally, we note that the sub-triangulation could

have been obtained using e.g. Delauney triangulation.

However, for simple 2D problems, as those investigated

in this work, this did not improve the quality of the

numerical solution. For 3D applications this may be a

more involved task where dedicated software for mesh-

ing would be necessary.

4 Optimization formulation

The optimization problems investigated in this work

can all be cast as a standard mathematical program,

i.e.

min
s∈Rn

: Ψ(s,u)

subject to: K(s)u = f

gj(s,u) ≤ 0, for j = 1..m

0 ≤ si ≤ 1, ∀i

(15)

in which Ψ(s,u) is the objective function to be min-

imized over s, gj(s,u) are the m potential inequality

constraints and the last line corresponds to a box con-

straint on the design variables. The optimization prob-

lem in eq. (15) is solved by a nested approach, mean-

ing that the state equations are considered implicit and

only evaluated through the objective or the state depen-

dent inequality constraints. The problem is solved iter-

atively by the Method of Moving Asymptotes (MMA)

(Svanberg 1987) and details of the used internal MMA

parameters are given in section 7. The use of gradient

based optimization methods require the computation of

design sensitivities which are presented next.

4.1 Evaluation of design sensitivities

In this work we follow, as much as possible, the stan-

dard discrete adjoint sensitivity analysis used for most

density based methods. In fact, the only noticeable dif-

ference is the slightly more involved evaluation of the

system matrix differentiated wrt. the design variable,

as will be made clear in the following.

Before proceeding, we remark that variational shape

derivatives, an often used sensitivity analysis tool for

level set methods, also could have been used (Choi and

Kim 2005). However, in combination with a paramet-

ric level set description, the sensitivities localized on

the interface would afterwards need to be extrapolated

(velocity field extension) to the nodal design variables.

For completeness, and to illustrate the similarity to

density method sensitivity analysis, we provide a de-

tailed description in the following. First, the adjoint

system is obtained by forming a Lagrangian and differ-

entiating wrt. the i’th level set variable, i.e.

L = Ψ + λT (Ku− f) (16)

dL

dφi
=
∂Ψ

∂φi
+ λT

∂K

∂φi
u +

(
∂Ψ

∂u
+ λTK

)
du

dφi
(17)

By requiring the last term to be zero the adjoint prob-

lem is formulated and is noted to be identical to that

from density methods.

KTλ = −
(
∂Ψ

∂u

)T
(18)

Now the sensitivity with respect to the level set variable

φi is given by

dL

dφi
=
∂Ψ

∂φi
+ λT

∂K

∂φi
u =

∂Ψ

∂φi
+ λT

n∑
e

(
∂ke
∂φi

)
u (19)

where the effect of using nodal variables is observed

as a need to sum over neighboring elements for each

nodal point. The last ingredient in the sensitivity com-

putation is, however, not as simple as for the density

method, i.e. the calculation of the element stiffness sen-

sitivity ∂ke/∂φi. First of all, for all uncut elements the

differentiated element matrix is zero. In other words,

the derivatives are localized around the interface be-

tween solid and void. This means that only cut ele-

ments need to be considered in the calculation. The

element matrix derivative of each cut finite element is

then found by a perturbation of the level set values as

this involves at most 4 extra element integrations de-

pending on the type of cut. We remark that rigorous an-

alytic differentiation of a cut element matrix would re-

quire the computation and assembly of an element ma-

trix for the derivative of each integration point, which

by far exceeds the computational cost for perturbation

(see (Sharma et al. 2017) for an in-depth comparison of

various shape sensitivity approaches).

To illustrate this property of the element matrix

derivative, a generic situation for a single cut element

is shown in Fig. 7, including its sub-triangulation and

virtual cut nodes. For this specific case it is only nec-

essary to compute perturbations of φ1, φ3, φ4 as the

sensitivity wrt. φ2 is zero since the element edges con-

nected to node 2 are uncut. Also, in order to ensure

that the triangulation of the individual element does
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φ1 < 0 φ2 < 0

φ3 < 0φ4 > 0

1 2

34

Fig. 7 Illustration of the finite difference method applied to
identify the derivative of the element matrix w.r.t. the level
set field. Red line is the cut defined by the two green virtual
nodes. Red arrows indicate the direction of the perturbation
applied.

not change by the perturbation of the level set, the

nodal values are always perturbed further away from

the zero level set as indicated by the red arrows in the

figure i.e. φ∗i = φi(1+δ) where δ is a small number, here

δ = 10−6. Based on numerical experience this value of δ

has demonstrated to be a proper choice with respect to

accuracy of the finite difference approximation. The el-

ement stiffness matrix sensitivity can then be computed

as

∂ke
∂φi

=
ke − ke∗
δφi

(20)

where ke∗ denotes the perturbed element stiffness ma-

trix. In the above derivation the sensitivities were com-

puted wrt. the nodal values of the level set field and

not the actual mathematical design variables s. To ob-

tain the needed sensitivity, the chain-rule is applied to

take into account the filter operations and the process

is exactly the same as for density methods.

∂Ψ

∂sj
=
∑
i∈Nj,i

∂Ψ

∂φi

∂φi
∂ŝi

∂ŝi
∂s̃i

∂s̃i
∂sj

(21)

or in terms of mapping operators

∂Ψ

∂s
= FT

(
HT

(
MT

(
∂Ψ

∂φ

)))
(22)

which basically consists of moving in the reverse order

through the derivative of the operators in eq. (14). Fi-

nally, it is noted that the smoothing filter ensure that

the otherwise localized sensitivity information is trans-

ferred to the neighboring region which is observed to

improve the speed and stability of the optimization pro-

cess.

4.2 Initial design and target volume

Constructing suitable initial configurations for level set

type optimization problems that meets the target vol-

ume constraint is a challenge, especially for low volume

fractions. That is, if the initial design is far greater than

the target volume one has to be carefull in scaling ob-

jective and constraint values. In this work we scale the

initial objective value to be 10 and use a MMA c pa-

rameter of 100 for penalizing the volume constraint in

the MMA sub-problem. We note that several alterna-

tive methods to deal with this issue exist, among them

the adaptive scheme in which the target volume is low-

ered on the fly as done in e.g. Christiansen et al. (2014).

4.3 Stopping criteria

Choosing a stopping criteria for the proposed level set

type optimization formulation is not as obvious as for

standard density methods, in which a maximum change

of 1% in the mathematical design field, s, is often used.

For the proposed method, even a very small change in

the mathematical design field can lead to a large change

in the physical design field ŝ. Our numerical experi-

ments have shown that a stopping criteria based on the

maximum change in the physical field is an appropriate

choice. In the following we choose ||ŝk− ŝk−1||∞ < 0.01

as a condition to stop the optimization process.

5 Numerical examples

In this section the proposed density based level set
methodology is demonstrated on four design problems.

Three minimum compliance problems, i.e. the cantilever,

the MBB beam and a (1D) bar problem as well as a

compliant mechanism problem which is intrinsically dif-

ficult for crisp interface level set (or pure shape) design

representations. For the minimum compliance problems

we also introduce a heuristic hole nucleation strategy

similar to that of Christiansen et al. (2014), which is

presented in section 5.1.1.

To ensure easy reproducibility of the presented method

and results, we have made the Matlab code needed to

run the minimum compliance problems publicly avail-

able. For the numerical examples we use the follow-

ing parameters unless otherwise stated: an outer move-

limit of 2%, an MMA asymptote initialization of 0.5,

an MMA asymptote increase of 1.2, an MMA asymp-

tote decrease of 0.7, an MMA constraint penalization

parameter of c = 100, a projection parameter of β = 12

and an initial objective scaling to 10. The movelimit

of 2% may seem very restrictive if seen in relation to
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density based problem settings, but as already stated,

even a small change in the design variables can lead to

large changes in the physical design.

When presenting the results we remark that all ob-

jective values are evaluated for the blue-print design

corresponding to ηb = 0.5, which is also the designs

shown in the figures unless specified explicitly.

5.1 Compliance minimization

The minimum compliance problems are solved using the

so-called modified robust approach for density methods

presented in Wang et al. (2011). The idea is to operate

with several design realizations, but at the same time

utilize the nature of the compliance problem to avoid

performing the FEA on each of them. The design prob-

lem can be formulated as

min
s∈Rn

: Ψ =

∫
Ω

αe(s)ε(ue) : σ(ue)dΩ

= [ue]
T

Keue

subject to: Ke(s)ue = f∫
Ω

αd(s)dΩ/V ∗ − 1 ≤ 0

0 ≤ si ≤ 1, ∀i

(23)

where superscript e refers to an eroded realization on

which the FEA is performed and d to a dilated real-

ization for which the volume constraint is imposed. To

ensure the blue-print design uses the prescribed amount

of material, we perform a volume continuation scheme

as presented in (Wang et al. 2011). That is, the target

volume fraction for the dilated realization is updated

every 20th iteration by:

V ∗ =
V target

Vb
Vd (24)

where Vb and Vd refers to the volume of the blue print

and dilated designs, respectively, and V target is the de-

sired target volume for the blueprint design. Finally,

we note that the minimum compliance problem is self-

adjoint, i.e. λ = −2u, and that the sensitivity can be

expressed as

dΨ

dφi
= −

n∑
e

(
uTe

∂ke
∂φi

ue

)
(25)

This means that the objective sensitivity does not re-

quire the solution of an adjoint problem.

5.1.1 Hole nucleation strategy

By construction, the level set based parametrization

cannot create new holes from inside the solid region.

Therefore, a hole nucleation scheme is required if new

holes should be allowed to emerge during the design

evolution. An often used workaround is to start with an

initial design that already contains several holes. These

may potentially move, change shape or disappear dur-

ing the optimization process. This, however, introduces

a strong initial design dependence that for some exam-

ples can prohibit the optimizer from reaching a good

quality local minimum. In order to alleviate this short-

coming, a hole nucleation scheme based on the strain

energy density in the elastic body is introduced. For

shape and level set based structural optimization prob-

lems, hole nucleation strategies have previously been in-

troduced using topological derivatives, c.f. (Eschenauer

et al. 1994; Sokolowski and Zochowski 1999; Feijóo et al.

2003). For the specific case of linear elasticity and min-

imum compliance, it is known that the strain energy

density and the topological derivative are equivalent up

to a constant for Poisson’s ratio ν = 1
3 . In this work we

therefore adopt an approach close to the one presented

in (Eschenauer et al. 1994; Christiansen et al. 2014),

which can be expressed as follows. The level-set is initi-

ated using a constant value slightly above zero contour

such that the entire domain is solid. In order to sort

the strain energy densities computed for every element

i in the eroded design we use ϕi = [uei ]
T

keiu
e
i where kei

is computed as in eq. (6). We then compute a relative

energy measure

τi =
ϕi − ϕmin

ϕmax − ϕmin
(26)

At the first and every subsequent 20th iteration do the

following:

1. Compute the element-wise strain energy density field.

2. Truncate the field at all void elements by assigning

the max value of the field.

3. Map to nodal representation using bi-linear shape

functions.

4. Compute τ and allow hole-nucleation at nodes ful-

filling τi < 5 · 10−4, however, at most 10 new holes.

5. Generate the hole(s) by perturbing the design field

s in the selected nodes until the dilated level set

shows a hole at these specific nodes.

This process is repeated until the target volume is reached,

or the current volume is below 30%, after which the hole

nucleation scheme is stopped. Hereafter only the target

volume fraction V ∗ is updated every 20th iteration us-

ing eq. (24). If not stopped, the low volume fraction

designs can easily degenerate by disconnecting the load
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1

3

Fig. 8 The half MBB beam design problem using symmetry.

from the support. That is, since the hole nucleation size

in this work is related to the filter, a single hole may

cut an entire bar. We remark that the restriction to 10

simultaneous hole nucleations is based on the authors’

experience through a number of numerical experiments.

Inserting too many holes may disconnect the structure

which, due to the nature of the hole nucleation scheme,

is irreversible and may lead to optimization failure. On

the other hand, inserting only a single hole may destroy

symmetry of the design.

5.1.2 The MBB beam

The first compliance example concerns the classical MBB

beam design problem as depicted in Fig. 8. The design

is optimized using the proposed robust formulation and

hole nucleation scheme under a volume constraint of

40% solid material using the fully solid initial design

in Fig. 11(a). We remark that using a fully solid initial

guess, means that no shape sensitivity information is

available at the first iteration. Thus, the first step of

the optimization process is to introduce holes in order

to create a solid/void interface from which the shape

optimization can proceed. We remark that this could

have been postponed by padding the design domain as

suggested in e.g. (Clausen and Andreassen 2017). The

material parameters are set to E = 1 and ν = 0.3,

the filter radius to R = 5 nodes and the projection

offset is chosen as ∆η = 0.01. Note that no continua-

tion scheme is used for the smooth Heaviside projection

filter. The resulting optimized design for a mesh reso-

lution of 150x50 elements is shown in Fig. 9 which also

shows the positions of the nucleated holes during the

optimization process. In addition a plot of the optimiza-

tion history is shown. From the history it is evident that

the initial compliance is low, due to stiff initial design.

Subsequently, the objective function increases as the

design is morphing and the volume is reduced. At ev-

ery 20th iteration new holes can potentially be inserted

and the volume is continuously decreasing. After 106 it-

Fig. 9 MBB beam design history using the proposed hole
nucleation scheme. Red circles in design plot show where holes
have been nucleated during the optimization process. Below
the objective function and volume-fraction history is shown.
Material volume 40%, filter radius R = 5, threshold offset
∆η = 0.01. Final blue-print objective Ψ = 227.4 after 242
iterations

erations the blue-print volume is reached and the hole

nucleation is disabled. Finally, the optimization process

is terminated by the stopping criterion after 242 iter-

ations. For completeness of the robust design descrip-

tion, Fig. 10 shows the mathematical design field, the

filtered design and the projected design, respectively,

corresponding to the optimized design in Fig. 9. From

these plots it is clear that the projection filter has the

exact same effect in relating the mathematical design
field to its physical interpretation as is observed for den-

sity methods, c.f Wang et al. (2011). That is, the physi-

cal design field (bottom) is fully converged to the upper

and lower bound, i.e. 0-1, with only a small spatial gra-

dient on the interface allowing a smooth interface de-

scription for the cut element analysis. From the center

plot it is seen that the filtered field has a constant spa-

tial gradient along the material-void interface, which is

important for the length scale control i.e through ∆η.

Regarding the intermediate values of the mathematical

design field (top) seen away from the interface, we re-

mark that they play no role in the physical realization

due to the cut element analysis.

If an initial design containing predefined holes is

specified the optimization procedure can be used with-

out the hole generation scheme, i.e. pure shape opti-

mization, but with the possibility to close holes. This

is investigated using the three initial designs shown in

Fig. 11(b-d). While the initial configurations in Fig.

11(b) and (c) simply consist of layouts with predefined
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Fig. 10 Top: Design field s, middle: Filtered design field
s̃ = F(s), bottom: Projected design field ŝb = Hb(s̃) for the
optimized design in Fig. 9.

(a)

(b)

(c)

(d)

Fig. 11 Initial designs used for the optimization of the MBB
beam. (a) an almost solid design, (b) a 6 by 4 hole configura-
tion, (c) a 3 holes configuration and (d) thresholded density
result using the top88 code.

Fig. 12 Plot of the objective function sensitivities for the
final design of the MBB beam in Fig 9. Sensitivities are lo-
calized near the interface.

holes, the initial design in Fig. 11(d) corresponds to an

optimized design obtained using the top88 code (An-

dreassen et al. 2011), for which the result is mapped

onto a nodal basis. The resulting optimized designs are

shown in Fig. 13 and are obtained using the same pa-

rameters as those used for the design in Fig. 9. De-

spite similar objective function values, it is seen that

the topology differs for the design obtained using the

initial guess in Fig. 11(b). This demonstrates that the

proposed method is, similar to other shape optimization

methods, highly influenced by the initial configuration.

We note that none of the start guesses, except that

obtained using top88, fulfill the volume constraint ini-

tially. A general observation is that during the process

of reducing the volume, existing holes may grow and

bars may disappear. However, when the target volume

is reached the optimizer is more reluctant to remove

bars and thus the topology tends to be more or less

fixed. For the design obtained using the top88 code, the

topology remains the same while the bars are slightly

adjusted. It is also seen that the symmetry condition

artifacts imposed by the top88 density filter, i.e. that

the design is always perpendicular the boundaries, are

alleviated.

5.1.3 Ensuring a length scale

Ensuring a length scale in an optimized design is paramount

for manufacturing considerations and hence, the versa-

tility and applicability of a given design methodology

to real world engineering problems. However, for the

proposed crisp interface cut element design approach

there is an additional argument for its necessity. As with

all other numerical design methods, the mathematical

program will find and utilize all weaknesses of a given

scheme. For the cut element approach the main issue

has to do with sub-element features, so-called double-

cuts, which results in an artificially high stiffness. In

addition, the formation of narrow notches where two

cut elements neighbor each other is also theoretically,

as well as design-wise, dubious. To illustrate these prob-

lems the MBB problem is solved without the robust

formulation and the resulting design is shown in Fig.
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Fig. 13 Initial design dependence for the optimization of the
MBB beam. 40% volume fraction Mesh 150 × 50 elements,
R = 5 elements, β = 12, ∆η = 0.01. The obtained objectives
are Ψ = {229.7, 225.4, 223.9} using the initial designs in Fig.
11(b-d).

Fig. 14 An illustration of artificial stiffness gained by slender
notches and a single node hole formed during optimization
of the MBB beam when no robust formulation is used i.e.
∆η = 0 while maintaining the convolution filter with R = 10
elements. Initial design was 11(c) and no hole generation was
employed.

14. The design shows how the optimizer benefits from

sub-element void features, and hence that a length scale

is needed to mitigate the problem.

As described we rely on the robust formulation from

the density method to ensure a length scale. As is the

case for density methods, the resulting length scale de-

pends on the filter radius, R, the steepness of the pro-

jection, β, the projection threshold η and projection

off-set ∆η. Fig. 15 shows three optimized instances of

the MBB beam using the initial design in Fig. 11(c)

with an allowed volume fraction of 50% using a grid of

150× 50 elements.

The optimized designs are shown by their contour

lines representing the dilated (dashed), blue print (solid)

and eroded (dotted), respectively. The minimum length

scale possible is clearly visible and is, ideally, given by

twice the distance from the blue print to the eroded

realization. By inspection of the optimized designs it

is seen that the smallest member size increases with

growing ∆η, which in turn leads to larger objective val-

ues. Compared to the density method, in which the

steepness parameter is increased using a continuation

scheme, we also observe that the chosen value of β = 12

results in slight variations of the minimum length scale.

However, if β is increased further it will eventually lead

to designs with undesired stair-casing interfaces as seen

in density methods. A possible remedy for this minor

shortcoming, is to apply the double filtering approach

presented in Christiansen et al. (2015) which would al-

leviate the stair-casing while ensuring the exact pre-

scribed length-scale. This is however deemed outside

the scope of the presented work, since the presented

examples clearly possess a length scale and effectively

suppress sub-element size features. From the optimized

MBB beams it is also seen that only the last example

comes close to the actual minimum length scale, and

we refer the reader to sections 5.1.6 and 5.2 for further

investigations into the imposed length-scale.

Finally, it is also be noted that the length scale is

only ensured for parts of the structure that is not in

contact with the boundary of the design domain. This is

a consequence of the symmetry condition of the applied

filtering scheme and it could be cured by introducing

padding to the design field as shown in e.g. (Clausen

and Andreassen 2017).

5.1.4 Mesh dependence

An appealing quality of the cut element based optimiza-

tion approach is the possibility to work with low reso-

lution background meshes and still obtain designs with

finely resolved interfaces. This is especially important

since the numerical integration scheme as well as sensi-

tivity analysis can be regarded as expensive compared

to density based methods on a uniform and structured

grid. To illustrate the effect of changing mesh resolu-

tion, the MBB design problem is solved for three dif-

ferent meshes. To make the comparison possible across

the different meshes, the same physical filter radius is

employed for all examples. The optimized designs are

shown in Fig. 16 and are all obtained using the initial
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Fig. 15 Length scale illustration in optimized designs of the
MBB beam on a mesh of 150 × 50 elements, a 50% vol-
ume fraction, a filter of R = 10 elements with β = 12 and
∆η = {0.1, 0.2, 0.3}, respectively. The obtained objective val-
ues are Ψ = {226.7 (164), 238.0 (322), 266.0 (583)}, respec-
tively, where the numbers in parenthesis denote the number
of iterations needed to reach the stopping criteria. The lines
corresponds to the dilated (dashed), blue print (solid line)
and eroded (dotted) realization. The solid red circles corre-
spond to the solid minimum feature size. All optimizations
were started from the same initial design in Fig. 11(c).

configuration with three holes in Fig. 11(c) and without

hole insertions.

Inspecting the three optimized designs in Fig. 16 re-

veals that all mesh resolutions yield well performing de-

signs with similar objective values and final topologies.

There are, however, small differences in the positioning

of the junctions which is also reflected in the objective

values that are within 1% of each other. Thus, it is clear

that the proposed design approach is capable of obtain-

ing mesh independent designs. Furthermore, the mesh

dependency study confirms the assertion that the cut

element optimization approach is well-suited for coarse

mesh utilization, since there is little difference in the

smoothness of the obtained designs across the different

meshes.

5.1.5 The cantilever beam

Another classical minimum compliance example is the

cantilever design problem sketched in Fig. 17. As for the

MBB problem, several initial guesses have been consid-

ered as shown in Fig. 18 and they consist of a 6 by 4

Fig. 16 Mesh independence study for the MBB beam.
90 × 30 R = 5, 150 × 50 R = 8.3, 300 × 100 R = 16.6,
∆η = 0.01 volume fraction 40%. The objective values are
Ψ = {228.1, 230.2, 229.3} and the results are obtained using
the initial configuration with three holes in Fig. 11(c).

1

2

Fig. 17 Cantilever problem

hole configuration seen in Fig. 18(a), an almost solid

design with cut edges along the free part of the exte-

rior boundary shown in Fig. 18(b) as well as a fully

solid configuration. As for the MBB beam the material

parameters are set to E = 1 and ν = 0.3.

First, the cantilever problem is solved without the

hole insertion strategy using the initial guess in Fig.

18(a) with varying ∆η to verify the imposed length

scale. The optimized design for a target volume of 40%

and two different projection off-sets ∆η = 0.01 and

∆η = 0.05 are shown in Fig. 19. Inspecting the op-

timized designs reveal that the topology differs. This is

contributed to the restriction on length scale imposed
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(a)

(b)

Fig. 18 Initial designs for cantilever problem. (a) a 6 by 4
hole configuration and (b) an almost solid design.

by the robust formulation. Also, due to the imposition

of a larger length scale, the objective is slightly higher

for the design with thicker bars. It is also seen that both

designs display a small degree of wobbly edges and the

frequency of these oscillations seems to relate to the fil-

ter radius. To examine this artifact further we perform

a study in which the filter radius is varied.

Fig. 20 shows two optimized design obtained using

a filter radius of R = 2 and R = 7, respectively. The

remaining parameters are kept constant, i.e. a mesh of

100x50 elements, a target volume of 40% and ∆η =

0.01. The fully solid initial design is used and the heuris-

tic hole insertion strategy is enabled. The optimized

design using a filter with R = 7 display a smooth and

crisp interface however, the relatively large filter radius

and thus influence area when inserting holes have re-

sulted in the development of an asymmetric topology.

The breakdown of the symmetry is observed to be a

consequence of the heuristic hole insertion scheme in

combination with the chosen mesh resolution and filter

radius. This is clearly not the case for R = 2. Instead,

the design with R = 2 is polluted by a high degree of

jagged edges, and hence does not display the desired

smooth interface between solid and void, although the

design remains symmetric. We note, however, that the

small filter radius is sufficient regularization to avoid

double-cuts and slender notches.

To further emphasize the need for regularization and

the robust formulation, we present a cantilever design

in Fig. 21 obtained with ∆η = 0 and a filter radius of

R = 3. The resulting design display several notches as

Fig. 19 Optimized design for the cantilever using 100 × 50
elements, R = 5 nodes and 40% material. The initial guess
is from Fig. 18(a) and the upper design is obtained using
∆η = 0.01 whereas the lower design uses ∆η = 0.05. The
blueprint objective values are Ψ = {72.8, 74.6}, respectively.
The red circles illustrate the minimum feature size.

Fig. 20 Cantilever using two different filter radii on a mesh
100x50 elements, ∆η = 0.01, 40% material, a fully solid initial
guess and with the hole insertion strategy. The top design
uses R = 2 and the bottom R = 7 and have objectives Ψ =
{74.0; 75.7}, respectively.
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well as a double cut, and hence many of the numeri-

cal artifacts discussed in (Makhija and Maute 2014) in

the context of an XFEM setting. However, contrary to

the work of (Makhija and Maute 2014) we are able to

avoid such features without adding enrichments to the

finite element formulation. The double-cut is especially

interesting since it is associated with an ambiguity in

the extreme case of perfect arithmetic, i.e. when two de-

sign points are exactly a and the other two are exactly

−a. In this case, the center part of the element can be

chosen to be either solid or void depending on the inter-

polated value of the level set in the element center. How-

ever, since all double cuts are associated with an artifi-

cially high stiffness, independent of the solid-void con-

figuration, we choose to let the interior be void for all

presented examples in this manuscript. This is deemed

reasonable since the robust formulation effectively sup-

presses double cuts and notches, although these features

may appear (and disappear) in the eroded design during

the design process. We remark that some sub-element

features could be suppressed by imposing a curvature

constraint on the physical design field, however, a slen-

der notch could still exist, just with a rounded tip. We

also note that the design is locally asymmetric, which

could be attributed to the triangulation of the cut ele-

ments being non-unique and hence that the placement

of integration points may differ slightly for two symmet-

rically cut elements. This may eventually result in one

being slightly stiffer than the other leading to the onset

of an asymmetric design evolution. Finally, we remark

that using a very large filter radius will lead to unin-

tuitive designs with a loss of symmetry. Therefore it is

important to emphasize that the filter radius should be

chosen with care based on the chosen mesh resolution

and ∆η.

The cantilever example is completed with an inves-

tigation of the effect of varying target volume fractions,

especially the low volume limit. This is relevant in the

cut element setting due to its inability to represent in-

termediate densities which are likely to occur in density

methods for low volume fractions. Using a fixed mesh

of 100 by 50 elements, R = 5, ∆η = 0.01 and the ini-

tial configuration in Fig. 18(b), the cantilever problem

is solved for three different target volumes of 40%, 30%

and 20%. The optimized designs are shown in Fig. 22

and all demonstrate the proposed methods ability to

produce designs with smooth material-void interfaces.

An important observation is that going below 20% tar-

get volume on the chosen mesh resolution results in

poorly performing designs and/or the breakdown of

the optimization procedure due to non-connected load

to support layouts. This means that although the pro-

posed method is well suited for coarse meshes, the tar-

Fig. 21 An illustration of slender notches and double cuts
formed during optimization of the cantilever if no robust for-
mulation is used ∆η = 0 and R = 5 elements. Initial structure
Fig. 18(a) without hole generation. The three zooms show
slender notches and double cuts that relies on artificial stiff-
ness present in the cut-element model

get volume and the chosen mesh resolution must be

correlated.

5.1.6 Design of (1D) elastic bar

The final minimum compliance problem is solely in-

tended to demonstrate control of the minimum feature

size. For this purpose the elastic bar design problem of

Fig. 23 is used. This problem is especially well-suited

for length-scale demonstration since it almost consti-

tutes a 1D design problem, meaning that the optimal
geometry is known in the form of a bar with uniform

thickness connecting the support to the load. The de-

sign problem is solved on a mesh of 50 × 50 elements

using the same parameters as already stated, with two

exceptions being the MMA parameter c = 1000 and a

movelimit of 1%. We aim for a target volume fraction

of 10% for the blueprint design and solve the problem

for two different filter radii and for varying projection

offsets.

The optimized designs can be seen in Fig. 24 where

the imposed minimum length scale is illustrated with

solid red circles. First, we observe that only the design

with R = 7 and ∆η = 0.1 was capable of reaching the

target volume. All other examples was hindered by the

imposed minimum length scale in conjunction with the

chosen MMA c parameter. That is, if the c parameter

was increased significantly, the optimizer would simply

ignore the objective function and the resulting designs

would disconnect the load from the support. From the

figure it is also evident that the eroded (dotted line) re-
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Fig. 22 Optimized cantilever designs for varying volume
fractions, i.e. 40%, 30% and 20% using ∆η = 0.01, R = 5
and the initial guess in Fig. 18(b). The resulting objectives
are Ψ = {73.2, 94.7, 139.7}, respectively.

1

1

Fig. 23 Bar design problem

mains constant for all presented designs, and hence that

achieved minimum the length scale is defined as a com-

bination of the chosen filter radius and the projection

offset. Since the volume constraint is on the dilated de-

sign, the optimizer will try to push the dilated structure

as close to the eroded as possible. This in turn ensures

that the gradient of the level-set field near the interface

attains its maximum slope i.e. a property defined by

the filtering. This is visible from the plot of the various

design fields shown in Fig. 25 of the R = 7, ∆η = 0.4

design. However, a prescribed length scale can only be

predicted (i.e. pre-computed based on the finding of

(Wang et al. 2011)) if β → ∞ which, for the proposed

level set method, would result in non-smooth bound-

aries, i.e. stair casing. In summary, this small example

study shows that the proposed design approach can be

used to control the minimum feature size, analogous to

that of density methods.

5.2 Mechanism design - force inverter

The numerical example section is concluded with the

optimization of a compliant mechanism, more specif-

ically the force inverter (Sigmund 1997). This design

problem, which can be found sketched in Fig. 26, is

more challenging for the cut element approach, and all

other crisp interface level set methods for that matter,

than the minimum compliance problem due to the fol-

lowing reason. Since the objective is to minimize the

horizontal displacement of the output node, an obvious

solution is to disconnect the output node from the input

and the supports, and thus obtain zero output displace-

ment. Furthermore, and in contrast to density based
methods, it is close to impossible to make the structure

re-connect if a disconnection occurs, since the cut ele-

ment approach does not provide sensitivity information

in the void region. This is not a pronounced issue for

density methods, since material can grow out of the void

region. In the cut element approach, one therefore have

to ensure that the disconnection does not happen at any

point during the design process. This can be achieved

in several ways. For example, one can start with a con-

figuration that already inverts the input force, use ex-

tremely small step lengths for the design update, reduce

the contrast between solid and void, tune the input and

output spring stiffnesses to name but a few. In this

work the problem is overcome by adding an additional

compliance constraint to the optimization formulation.

The compliance constraint is intended to ensure a fully

connected structure and for that purpose an auxiliary

problem is introduced as shown in Fig. 27. The prob-

lem is almost identical to the model problem for the

inverter itself, with the difference of an additional load
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∆η = 0.1 ∆η = 0.2 ∆η = 0.3 ∆η = 0.4

R = 7

φb = 11.1, Vb = 0.10 φb = 9.14, Vb = 0.13 φb = 8.04, Vb = 0.15 φb = 7.01, Vb = 0.18

R = 10

φb = 9.07, Vb = 0.13 φb = 7.25, Vb = 0.18 φb = 6.32, Vb = 0.22 φb = 5.64, Vb = 0.26

Fig. 24 Length scale demonstration for optimized designs of the (1D) bar design problem (Fig. 23) on a mesh of 50 × 50
elements and a 10% target volume fraction. The lines corresponds to the dilated (dashed), blue print (solid line) and eroded
(dotted) realization and the red circles refers to the minimum length scale on the blueprint. All optimizations were started
from a solid design with free horizontal boundaries.

Fig. 25 Slice plot of the various design fields for the (1D)
bar design problem with R = 7,∆η = 0.4.

on the output port. Hence, a bound on the compliance

for the auxiliary problem will ensure that the two loads

are connected to the support in the bottom left. Once

a functioning mechanism is obtained, i.e. all realiza-

tions display negative output port displacements, the

compliance constraint can be turned off, and thus the

final part of the optimization process concerns the true

inverter problem alone. We remark, that once the ob-

jective functions become negative, the sensitivity infor-

mation will no longer point to a disconnection, as this

will lead to an increase in objectives. It will, however,

still try to make the connection as hinge-like as possible,

which advocates the need for feature size control.

1

2

kin kout

Fin
uout

Fig. 26 Force inverter design problem. The material has
stiffness E = 1 and ν = 0.3 and the input and output springs
are set to k = 0.1. The input force is set to F = 1.

1

2

Fin Fout

Fig. 27 Auxiliary compliance problem for the force inverter.
Both forces are set to F = 1.

The resulting optimization problem can be stated

in full as the following mathematical program
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min
s∈Rn

: Ψ = max
k
{LTuk}, k ∈ [e, b]

subject to: Ke(s)ue = f

Kb(s)ub = f

Ke
a(s)uea = fa∫
Ω

αe(s)ε(uea) : σ(uea)dΩ/c∗ − 1 ≤ 0∫
Ω

αb(s)dΩ/V ∗ − 1 ≤ 0

0 ≤ si ≤ 1, ∀i
(27)

where e, b refers to the robust formulations eroded

and blueprint design, respectively, and L is a vector

of zeros with a single unitary non-zero placed at the

position of the output dof. The auxiliary compliance

constraint and accompanying finite element system are

identified with subscript a and the sensitivity of the

constraints is identical to eq. (25) divided with c∗, which

is a user defined value for the maximum allowable com-

pliance. The non-smooth minimax problem is solved

in a nested approach using a bound formulation, c.f.

(Olhoff 1989). Contrary to the minimum compliance

problem for which only a single finite element problem

had to be solved per design cycle, this formulation re-

quires the solution to three forward problems and two

adjoints, one for each of the objective terms. The ad-

joint equations are as follows

Kkλk = −L, k ∈ {e, b} (28)

and the sensitivities can subsequently be computed as

dΨk

dφi
=

n∑
j

([
λkj
]T ∂kkj

∂φi
ukj

)
, k ∈ {e, b} (29)

where the sum over j refers to elements adjacent to

node i. Finally, we remark that the volume constraint

is imposed on the blue print design and that the dilated

realization have been omitted, which means that the

optimized result is only guarantied to be robust wrt.

over-etching.

The design problem is first solved using the same

parameters found to work well for the compliance min-

imization problems. For a mesh of 100 × 50 finite ele-

ments we employ a filter with radius R = 5, a steep-

ness parameter of β = 12, ∆η = 0.01 and an ini-

tial configuration with 6 by 4 holes (c.f. bottom im-

age in Fig. 28). The input and output springs are set

to kin = kout = 0.1, the target volume fraction is set

to 30% and a target compliance of c∗ = 70 is chosen,

Fig. 28 Optimized inverter using 100 × 50 elements, 30%
volume, ∆η = 0.01, R = 5 elements, β = 12 and a 6by4 initial
design. The compliance target is set to c∗ = 70. The final
objective values are Ψe = −1.2247, Ψb = −1.2261 for spring
stiffnesses kin = 0.1 and kout = 0.1, and the stopping criteria
is reached after 279 cycles. The dashed vertical line indicate
the point at which the compliance constraint is turned off.

which is slightly higher than the compliance of the ini-

tial configuration. The compliance constraint is turned

off when Ψk < −0.4 for both realizations.

The resulting optimized force inverter can be seen

in Fig. 28 which also shows the objective and constraint

histories. From this it is seen that the stopping cri-

teria is met after 279 cycles and that the compliance

constraint is disabled after 26 iterations, indicated by

the dashed vertical line. The design is seen to success-

fully invert the input force and result in a blueprint

objective of Ψb = −1.2261. From the history plot it is

clear that the compliance constraint remains inactive

throughout most of the initial optimization process. It

only becomes active during the cycles when the objec-

tive function goes from positive to negative and it is

turned off immediately after reaching this point.
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Fig. 29 Two force inverter designs obtained for varying com-
pliance targets. The top design uses a c∗ = 50 while the
bottom one is for c∗ = 60. The final objective values are
Ψb = 0.0992 and Ψb = −1.2216, respectively.

In order to investigate the importance of the choice

of c∗, Fig. 29 shows two additional optimization results

in which the target compliance is lowered to c∗ = 50

and c∗ = 60, respectively. From the top design it is seen

that a too tight compliance constraint locks the opti-

mizer and results in a design with a positive objective

value, i.e. no force inversion. Since the objective(s) re-

main positive, the compliance constraint is found to be

active throughout the optimization process and thereby

hindering the force inversion. Loosening the compliance

constraint leads to a well-performing design, with an

objective value close to that seen in Fig. 28. This in-

dicates that the auxiliary compliance constraint plays

very little, if any, role wrt. solving the inverter problem

once a feasible mechanism is obtained. If, on the other

hand, the compliance target is increased substantially

above 70, the designs will disconnect from the output

and the resulting objective value is zero. To summa-

rize: a compliance constraint can be used to ensure a

robust optimization procedure, but, at the same time

the target value must be chosen appropriately in order

to obtain good designs. Thus, a certain degree of pa-

rameter tuning is currently needed to solve mechanism

design problems using the proposed methodology. It is

desirable to device a robust heuristic for the choice of

compliance target, however, this is deemed outside the

scope of the presented manuscript.

Having established the use of a compliance con-

straint during the initial phase of the optimization pro-

cess, the next step is to investigate the influence of the

robust formulation on the optimized force inverters.

This will reveal whether or not the compliance con-

straint alone is capable of achieving designs without

numerical artifacts. Solving the the design problem in

eq. (27) for ∆η = 0 leads to the design shown in Fig.

30(a). From the optimized design, and the two zoom

inserts, it is clear that a force inverter is obtained, but

also that undesired sub-element features have appeared

near the hinge and at the top of the hole.

To investigate the length scale control the inverter

problem is solved for ∆η = 0.05 and ∆η = 0.10 and the

results are shown in Fig. 30(b-c). From the results one

sees that the change in threshold parameters has the

expected effect on both design and performance. That

is, increasing ∆η leads to a larger minimum length scale

and at the same time to a reduction in the objective

function.

6 Discussion and Conclusion

This work considers a cut element shape and topol-

ogy optimization methodology in which the design field

representation and regularization is purely based on the

density method. Especially, the proposed methodology

adopts the so-called robust formulation from density

methods in order to introduce a length scale. Based on

a Matlab implementation, the methodology is demon-

strated on several numerical examples covering both

minimum compliance and compliant mechanism design

problems. For the minimum compliance problem, a heuris-
tic hole generation scheme is introduced to allow for

true topology optimization, whereas an additional com-

pliance constraint is introduced to ensure connected

mechanism designs. We emphasize that the compliance

constraint is only used to ensure connectivity while the

objective values pass through the critical zero point,

and that it is subsequently turned off. In summary, the

authors argue that the proposed methodology can be

viewed as a density based optimization method with

an overlay of cut element opposed to the often used er-

satz material FEM model. In that respect, this work

demonstrates a clear overlap between density and the

crisp interface level set method, and perhaps more im-

portantly, this work provides the density community

with an easily accessible access point to level set based

optimization methods.

Despite its many attractive properties, the proposed

method comes with several issues and shortcomings.

The main issue is an inherent problem with exact in-

terface methods and concerns the localized sensitivity
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(a)

(b)

(c)

Fig. 30 The force inverter problem solved for varying ∆η
using the same mesh and parameters as in Fig. 28. Plot (a)
is for ∆η = 0 with Ψ = −1.229, (b) is for ∆η = 0.05 with
Ψb = −1.197 and (c) is for ∆η = 0.10 with Ψb = −1.168.
The red circles in the two bottom plots corresponds to the
minimum length scale.

information. This is partially remedied by the image

processing filters, but still means that only boundaries

can move and hence, that no material can appear out of

void. Another issue is due to the numerical properties

of the cut element method which, similar to ersatz ma-

terial models, does provide a stiffness in the void phase

of a cut element. This can, and will, be utilized by the

optimization algorithm, and hence a minimum length

scale must be introduced to suppress this artifact. The

method is also extremely sensitive to optimization pa-

rameter tuning, i.e. MMA parameters, level set bounds

and maximum step length for the design update.

Similar to other shape optimization approaches, the

optimized design is highly dependent on the chosen ini-

tial configuration. Compared to density methods this is

mainly due to the difficulties in automatically generat-

ing an initial configuration fulfilling the target volume

constraint, especially for low volume fractions.

Although not explicitly addressed in the numerical

examples, the run time for the numerical examples are

also far greater than that used by density method in e.g.

the 99-line or 88-line Matlab codes. This is also evident

in the methods coding complexity. That is, the accom-

panying code is several hundred lines of code mainly

due to the cut element modelling and the slightly more

involved sensitivity analysis.

A consistent, and probably the most important, ob-

servation from the numerical experiments is that the

best results are obtained when using a density opti-

mized design as the starting guess. That is, the cut

element method is an excellent post processing tool for

the presented example problems, but will display its

real strength for optimization problems with crucial in-

terface conditions such as elastic contact (Lawry and

Maute 2018), fluid-structure interaction (Jenkins and

Maute 2015) and multi-material structures (Faure et al.

2017) to name a few problems currently solved using

XFEM.

There are several obvious future research directions

based on the proposed methodology and available code.

Besides interface dominated problems, e.g. pressure load-

ing and multiphysics problems, this include a rewrite

of the code using a lower level language than Matlab,

e.g. C/C++ or Fortran. This may allow the element

integration, the finite element assembly and the sen-

sitivity calculation to reach speeds similar to those of

the density method. Extending the code to 3D is also

straightforward, although the quadrilaterals and trian-

gles should be exchanged with hexagonals and tetrahe-

drals, respectively. Since the cut element optimization

framework is based on a logical structured mesh, it is

extremely well suited for parallel computing, as it does

not require remeshing or renumbering of the dof dur-

ing the optimization process. Therefore, the TopOpt in

PETSc framework presented in Aage et al. (2015) can

with some modifications be used to perform cut element

based structural optimization. Regarding length scale

imposition, the presented work does to some extent en-

sure this in the optimized design. However, in order

to obtain a true length scale, the projection parame-

ter must be set very high, which will result in designs

with jagged edges. Therefore, it would be interesting
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to further explore the density based robust formulation

using the double filtering approach, c.f. (Christiansen

et al. 2015). Also, a hole generation scheme for the

mechanism design problems is an interesting path to fol-

low. Finally, it is clear that the proposed method lacks

the robustness and simplicity of the standard density

method. Thus, it would be highly desirable if one could

reduce the complexity of the cut element optimization

method and at the same time increase its robustness.

7 Reproduction of results

The authors have stored all data related to the pre-

sented examples and ensured that all relevant parame-

ters, including the cut element method, are stated clearly

throughout the manuscript. Furthermore, the base Mat-

lab code capable of solving the minimum compliance

problem is freely available from www.topopt.dtu.dk.

However, we note that the user could MEX-compile

some of the functions to achieve a reasonable perfor-

mance compared to e.g. the 88-line density code.
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Belytschko T, Parimi C, Moës N, Sukumar N, Usui S (2003)
Structured extended finite element methods for solids
defined by implicit surfaces. International Journal for
Numerical Methods in Engineering 56(4):609–635, DOI
10.1002/nme.686

Bendsøe MP (1989) Optimal shape design as a material dis-
tribution problem. Structural Optimization 1(4):193–202,
DOI 10.1007/BF01650949

Bendsøe MP, Kikuchi N (1988) Generating optimal topolo-
gies in structural design using a homogenisation method.
Computer Methods in Applied Mechanics and Engineer-
ing 71(2):197–224, DOI 10.1016/0045-7825(88)90086-2

Bendsøe MP, Sigmund O (2004) Topology Optimization.
Engineering online library, Springer Berlin Heidelberg,
Berlin, Heidelberg, DOI 10.1007/978-3-662-05086-6

Bernland A, Wadbro E, Berggren M (2018) Acoustic shape
optimization using cut finite elements. International Jour-
nal for Numerical Methods in Engineering 113(3):432–
449, DOI 10.1002/nme.5621

Borrvall T, Petersson J (2003) Topology optimization of flu-
ids in Stokes flow. International Journal for Numerical
Methods in Fluids 41(1):77–107, DOI 10.1002/fld.426

Bourdin B (2001) Filters in topology optimization. Inter-
national Journal for Numerical Methods in Engineering
50(December 1999):2143–2158, DOI 10.1002/nme.116

Burman E, Claus S, Hansbo P, Larson MG, Massing A (2014)
CutFEM: Discretizing geometry and partial differential
equations. International Journal for Numerical Meth-
ods in Engineering 104:472–501, DOI 10.1002/nme.4823,
1201.4903

Burman E, Elfverson D, Hansbo P, Larson MG, Larsson
K (2018) Shape optimization using the cut finite ele-
ment method. Computer Methods in Applied Mechanics
and Engineering 328:242–261, DOI 10.1016/j.cma.2017.
09.005, 1611.05673

Burman E, Elfverson D, Hansbo P, Larson MG, Larsson
K (2019) Cut topology optimization for linear elastic-
ity with coupling to parametric nondesign domain re-
gions. Computer Methods in Applied Mechanics and En-
gineering 350:462–479, DOI 10.1016/j.cma.2019.03.016,



Level set topology and shape optimization by density methods using cut elements with length scale control 23

1809.07503

Chen S, Chen W (2011) A new level-set based approach
to shape and topology optimization under geometric un-
certainty. Structural and Multidisciplinary Optimization
44(1):1–18, DOI 10.1007/s00158-011-0660-9

Chen S, Wang MY, Liu AQ (2008) Shape feature control
in structural topology optimization. Computer-Aided De-
sign 40(9):951–962, DOI 10.1016/j.cad.2008.07.004

Chen S, Chen W, Lee S (2010) Level set based robust shape
and topology optimization under random field uncer-
tainties. Structural and Multidisciplinary Optimization
41(4):507–524, DOI 10.1007/s00158-009-0449-2

Choi KK, Kim NH (2005) Structural Sensitivity Analysis and
Optimization 1: Linear Systems. Mechanical Engineering
Series, Springer, DOI 10.1007/b138709

Christiansen AN, Nobel-Jørgensen M, Aage N, Sigmund O,
Bærentzen JA (2014) Topology optimization using an
explicit interface representation. Structural and Multi-
disciplinary Optimization 49(3):387–399, DOI 10.1007/
s00158-013-0983-9

Christiansen RE, Sigmund O (2016) Experimental validation
of systematically designed acoustic hyperbolic meta ma-
terial slab exhibiting negative refraction. Applied Physics
Letters 109(10), DOI 10.1063/1.4962441

Christiansen RE, Lazarov BS, Jensen JS, Sigmund O (2015)
Creating geometrically robust designs for highly sensi-
tive problems using topology optimization: Acoustic cav-
ity design. Structural and Multidisciplinary Optimization
52(4):737–754, DOI 10.1007/s00158-015-1265-5

Clausen A, Andreassen E (2017) On filter boundary con-
ditions in topology optimization. Structural and Multi-
disciplinary Optimization 56(5):1147–1155, DOI 10.1007/
s00158-017-1709-1

Cook RD, Malkus DS, Plesha ME, Witt RJW (2002) Concept
and Applications of Finite Element Analysis

Dapogny C, Faure A, Michailidis G, Allaire G, Couve-
las A, Estevez R (2017) Geometric constraints for
shape and topology optimization in architectural de-
sign. Computational Mechanics 59(6):1–33, DOI 10.1007/
s00466-017-1383-6
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