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Abstract This paper presents a flexible framework for par-
allel and easy-to-implement topology optimization using
the Portable and Extendable Toolkit for Scientific Com-
puting (PETSc). The presented framework is based on a
standardized, and freely available library and in the pub-
lished form it solves the minimum compliance problem on
structured grids, using standard FEM and filtering tech-
niques. For completeness a parallel implementation of the
Method of Moving Asymptotes is included as well. The
capabilities are exemplified by minimum compliance and
homogenization problems. In both cases the unprecedented
fine discretization reveals new design features, providing
novel insight. The code can be downloaded from www.
topopt.dtu.dk/PETSc.

Keywords Topology optimization · Parallel computing ·
PETSc · Homogenization · Large scale

1 Introduction

The educational aim of this paper is to demonstrate how
large scale topology optimization allows for optimization
of three-dimensional problems with yet unseen fine dis-
cretizations, and to show how this leads to the discovery
of new effects in otherwise well-studied design problems.
Furthermore, the paper presents a flexible framework for
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parallel topology optimization, made freely available in
order to facilitate the transit to large scale topology opti-
mization for the interested reader. However, the paper is
not intended to be a detailed introduction to parallel pro-
gramming, instead we focus on showing some interesting
examples and presenting the framework.

The utilization of parallel processing in scientific com-
puting is constantly increasing, and has also made an impact
on the topology optimization community. Within the past
decade several works have been published on the subject,
see e.g. Borrvall and Petersson (2001), Kim et al. (2004),
Vemaganti and Lawrence (2005), Mahdavi et al. (2006),
Aage et al. (2008), Evgrafov et al. (2008), Wadbro and
Berggren (2009), Schmidt and Schulz (2011), Challis et al.
(2013) and Aage and Lazarov (2013). Though many of these
works provide schematics on how the parallelization is real-
ized and/or platform specific code, no one provides an easy
to use and portable code. In this work we provide such a
framework based on the freely available library for high
performance and scientific computing PETSc (Balay et al.
2013). Using PETSc reduces the size of the actual imple-
mentation, and results in a compact code (compared to our
existing in-house parallel optimization codes), which is easy
to read, use and extend. Therefore, the presented framework
is an ideal development platform for topology optimization
problems.

PETSc is an acronym for the Portable and Extendable
Toolkit for Scientific Computing and it forms the basis for
the presented parallel topology optimization code. PETSc
is a collection of parallelized (and sequential) libraries
that contain most of the necessary building blocks needed
for large scale topology optimization, i.e. sparse matrices,
vectors, iterative linear solvers, non-linear solvers and time-
stepping scheme. The package eliminates the need to write
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such low-level math libraries and thus speeds up develop-
ment time by orders of magnitude. The main advantages
of PETSc are as follows: a) The libraries are tested exten-
sively and the code is well maintained by specialists. The
implementation is parallel scalable to thousands of cores
and portable to Linux, UNIX, Mac and Windows. b) The
code is written in C in an object oriented manner, such
that the base-code is easily extendable and hides the par-
allel complexity from the user. c) The library is extremely
easy to install and use which, combined with the above
highlights, makes PETSc well suited for both novices and
experts within the field of parallel and scientific comput-
ing. The authors acknowledge that several other numerical
libraries have similar functionality to PETSc, e.g. Trilinos
Heroux et al. (2005). However, PETSc is (one of) the sim-
plest frameworks that provide the basic sparse linear algebra
routines, while e.g. Trilinos is a larger and more complex
framework, which makes it more difficult to customize.
This, and fact that PETSc can interface most other rele-
vant libraries, have made PETSc the obvious choice for the
framework.

The framework presented in this work is made freely
available and can be downloaded from www.topopt.dtu.
dk/PETSc. The package contains the building blocks for
conducting large scale, parallel topology optimization of
the standard minimum compliance problem on structured
grids (Bendsøe and Sigmund 2004) based on the multigrid
approach, similar to the one presented in Amir et al. (2014).
The code solves a minimum compliance cantilever problem
for which an example can be seen in Fig. 1.

In the following sections we present the PETSc based
topology optimization framework along with guidelines for
usage and extensions. Next we demonstrate the possibili-
ties of the framework by solving two minimum compliance
problems as well as two problems from homogenization

(minimum Poisson ratio and maximum bulk modulus
problems).

2 Code layout, usage and extensions

The main motivation for the development of the proposed
topology optimization framework is to have an easy-to-use
and easy-to-extend basis for conducting large scale topol-
ogy optimization of various physical problems. However, to
ensure that the publicly available distribution is easily acces-
sible to the topology optimization community, the default
problem is a minimum compliance problem.

Basing the code on PETSc means that structured grid
generation, partitioning, parallel assemblies, matrix-vector
operations, linear and non-linear solvers are readily avail-
able. Thus, the focus can be put on the physics and the
optimization, and not on the development of high per-
formance linear algebra libraries. The PETSc library can
be downloaded from www.mcs.anl.gov/petsc and compiled
following the simple instructions on the website.

To provide an overview of the topology optimization
framework, a diagram of the code components can be seen
in Fig. 2. The foundation of the framework is the PETSc
library, and from the diagram one can see that the code
we provide consist of five C++ classes and a short main
program. The diagram also indicates which classes that
need to be modified in order to solve a different optimiza-
tion problem, i.e.: black boxes mean that modifications are
likely to be required and red boxes that no modifications
should be applied. The dashed red box indicates that modi-
fications might be necessary, depending on the application.
Finally, the code complexity is indicated by the large arrow
to the left which points in the direction of less complex
code.

(a) (b)

Fig. 1 The classical MMB beam in 3D on a 6 × 1 × 1 domain. The
beam is loaded on the line at the center top of domain and have roller
supports at the bottom left and right edges. The volume fraction is set
to 12 % and the filter radius for the PDE filter is 0.08. The problem is
solved using symmetry on a mesh of 1008 × 336 × 336 elements, i.e.
a total of 113.8 million design elements and 343.8 million state dofs.

The visualized design is thresholded at ρPhys = 0.5 and colored by the
magnitude of the displacement field. The problem was terminated at a
design change less than 0.01, which occured after 928 iterations. The
problem was distributed on 1800 cores and took a total of 4 hours and
32 minutes to complete
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Fig. 2 Layout of the optimization framework. The names in the boxes
refer to the main program and to the classes containing physics, opti-
mization settings, filtering, output, MMA and the PETSc library. The
box colors indicate whether or not a given class needs modification
when changing the problem type, such that red indicates no need
for modifications, dashed red that some minor modifications can be
needed and black that modifications likely to be are needed. The arrow
to the left indicates the complexity of the different components, i.e. the
higher in the diagram the simpler the code

2.1 Class structure

Since the goal is to obtain a versatile framework, the classes
are divided into clearly separated units. This means for
example, that changing the physics only requires modifica-
tions of a single class, i.e. the physics class which in the
default case solves a linear elasticity problem. A list of the
classes with description is given below

– TopOpt Contains information on the optimization prob-
lem, gridsize, parameters and general settings.

– LinearElasticity The physics class which solves
the linear elasticity problem on a structured 3D grid
using 8-node linear brick elements, see e.g. Zienkiewicz
and Taylor (2000). It also contains methods neces-
sary for the minimum compliance problem, i.e. objec-
tive, constraint and sensitivity calculations (Bendsøe
and Sigmund 2004). The default linear solver is a
Galerkin projection multigrid preconditioned flexible
GMRES with GMRES/SOR smoothing, which follows
the implementation presented in Amir et al. (2014),
except for the choice of Krylov method and smoother.
An example on how to change the solver is given in the
upcoming section.

– Filter/PDEFilter are filter classes which contains
both sensitivity (Sigmund 1997), density (Bruns and
Tortorelli 2001; Bourdin 2001) and PDE (Lazarov
and Sigmund 2011) filters through a common
interface.

– MMA Class containing a fully parallelized implemen-
tation of the Method of Moving Asymptotes (MMA)
(Svanberg 1987) following the description given in
Aage and Lazarov (2013).

– MPIIO A versatile output class capable of dumping
arbitrary field data into a single binary file.

The distribution also includes Python scripts that conve-
niently converts the binary outputdata to the VTU format
(Schroeder and Martin 2003) that can be visualized in e.g.
ParaView version 4 or newer (Ahrens et al. 2005).

2.2 Compiling and running the code

Assuming that PETSc is already installed (see www.mcs.
anl.gov/petsc) the user is only required to perform the fol-
lowing six steps to get started on a 64-bit Linux platform.1

Note that visualization of the results requires Python for
postprocessing and ParaView for the actual visualization.

1. Download and extract the code from www.topopt.dtu.
dk/PETSc.

2. Modify the makefile such that PETSC_DIR and
PETSC_ARCH points to the local PETSc installation on
your system.

3. Type make topopt in a terminal to compile the code.
4. Type mpiexec -np 2 ./topopt to run the code on

two processors using the default settings. The optimiza-
tion and solver settings along with optimization history
will be written to the terminal.

5. Prepare the outputdata for ParaView by typing
python bin2vtu #, where # is the desired timestep.
Note that the default settings saves data the first 10
iterations and then subsequently every 10th iteration in
order to save space.

6. Visualize in ParaView by typing paraview *.vtu.

The default problem is the minimum compliance cantilever
problem as described in Aage and Lazarov (2013) on a
2 × 1 × 1 domain using sensitivity filter with radius 0.08
and a volume fraction of 0.12 percent. The contrast between
solid and void is set to 109, the convergence criteria is
||xk − xk−1||∞ < 0.01 or a maximum of 400 design cycles.
Results based on the default settings can be seen on the
download page.

2.3 Run time options

The flexibility of the framework allows the user to change
a number of settings and parameters at run time. The opti-
mization specific options that can be changed at run time are
written to screen before the optimization begins, whereas

1For other operating systems please follow the guidelines on www.
mcs.anl.gov/petsc. After PETSc is installed, the compilation of the
TopOpt application is done similar to that described in Section 2.2.
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the PETSc specific options, e.g. linear solver, can be found
in the PETSc manual. For example changing the filter to
PDE filtering with a radius of 0.2, a volume fraction of
0.3 and a total of 200 iterations is done in the following
command

mpiexec -np 2 ./topopt -filter 2 -rmin 0.2 \

-volfrac 0.3 -maxItr 200

Due to the flexible construction of PETSc it is possible to
change, monitor and test a vast variety of different solver
combinations simply by changing the run command. For
example, changing the linear solver from the default to a

Jacobi preconditioned conjugate gradient method can be
obtained as follows

mpiexec -np 2 ./topopt -ksp_type cg \

-ksp_max_it 10000 -pc_type jacobi

However, using such a simple solver would result in
increased CPU time, especially for large problems.

2.4 Extension

The list of possible extension that can be achieved, using the
presented framework as a platform, covers everything from

Fig. 3 Optimized cantilever
beams on a 2 × 1 × 1 domain
allowing 12 % material
discretized by 27.6 million
elements. The design problems
differ through the filter radius
such that rmin = 0.01 for (a, c),
rmin = 0.03 for (b, d),
rmin = 0.04 for (e) and
rmin = 0.10 for (f). Plot (c) and
(d) shows cross sections of the
designs with rmin = 0.01 and
0.03, and illustrates the internal
holes generated for the smaller
filter radius. All the designs are
thresholded at ρPhys = 0.5 and
colored by the magnitude of the
displacement field

(a) (b)

(c) (d)

(e) (f)
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(a)

(b)

Fig. 4 Minimum compliance design of a roof support, c.f. the Qatar
Convention center (Sasaki 2007). The plot in (a) shows the full opti-
mized roof structure, while plot (b) shows a single of the two support
structures. The design domain is due to symmetry reduced to one
quarter of the domain seen in (a) or half of (b). The computational
mesh consists of 3.1 million elements. Both plots are thresholded at
ρPhys = 0.5 and colored by the density field

linear to non-linear mechanics, fluid mechanics, acoustics,
electromagnetics and generalized multiphysics problems.
Describing all aspects of such extensions is outside the
scope of this paper, and we will therefore limit this section to
discuss how to change the boundary conditions for the mini-
mum compliance problem and give a few general guidelines
for switching to a new physical setting.

To solve the minimum compliance problem with diffe-
rent loading and support conditions, changes should only
be made to a single method in the physics class, i.e. the
SetUpLoadandBC()methodinLinearElasticity.h/cc.
This method simply sets the boundary conditions based on
coordinates and modifications are therefore straightforward.

The modular composition of the optimization framework
means that changing the physics to e.g. fluids, homogeniza-
tion, etc, only requires that a single new class is written.
The coding complexity is further minimized since much
of the provided linear elasticity solver can be reused or
at least provide inspiration for the new physical problem.
To demonstrate the versatility of the framework we also
show results from homogenization problems in the example
section.

Fig. 5 Optimized designs for a
1 × 1.2 × 1.2 box subjected to
pure torsion. Figures (a) and (b)
shows the design, and a slice
thereof, for a volume fraction of
10 % and a filter radius of 0.025
when using an uniform initial
guess. For the designs in (c) and
(d) the initial guess is a hollow
sphere, optimized for a volume
fraction of 1 % and a filter radius
of 0.003 and a volume fraction
of 0.5% and a filter radius of
0.001, respectively. Designs
(a–c) are obtained using a mesh
of 26.1 million elements
distributed on 1000 cores while
the design in (d) was run on a
mesh of 82.1 million elements
on 2000 cores

(a) (b)

(c) (d)
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3 Examples

In the following sections the capabilities of the frame-
work is presented by solving different minimum compliance
problems as well as material design problems for maxi-
mum bulk modulus and minimum Poison’s ratio. Unless
otherwise stated, all examples are run on a cluster with
a total of 21 nodes, each equipped with two Intel Xeon
5650 6-core CPUs and 48GB memory connected by Infini-
band. All problems are solved using the afore mentioned
Galerkin projection geometric multigrid preconditioned
flexible-GMRES. If not otherwise stated we use four multi-
grid levels, four GMRES/SOR smoothing steps per level
and a relative convergence tolerance of 10−5. The coarse
level problem is solved with GMRES/SOR to 10−8 or a
maximum of 30 iterations. Due to the effectiveness of the
multigrid preconditioning strategy, the F-GMRES is never
restarted, i.e. for the presented examples all linear solves are

obtained with much less than the allowed 200 F-GMRES
iterations.

3.1 Minimum compliance

The first example is a re-run of the cantilever problem
presented in Aage and Lazarov (2013). In this work we dis-
cretize the 2×1×1 cantilever by 480×240×240 elements,
i.e. 27.6 million design elements and 83.8 million state dofs.
The problem is then solved for various filter radii, i.e. from
rmin = 0.01 to 0.1, with a solid/void contrast of 109. The
design problems have been run for 1000 design iterations
on 24 CPUs (144 cores) yielding an average iteration time
varying from 60s to 30s for the smallest and largest filter
radius, respectively. The relationship between lengthscale
and solution time (i.e. number of iterations for GMRES)
is expected for the chosen multigrid preconditioner, since
smaller lengthscales are harder to represent on the coarse

Fig. 6 Optimized 3D isotropic
microstructure with a Poisson’s
ratio of −0.80. The unit cell is
discretized by 2003 = 8 million
elements and is shown in (a).
The plots in (b-c) show
3 × 3 × 3 unit cells from two
different angles. The clearest
occurence of a “line hinge“ is
marked by a red circle in (c) and
a close up is shown in (d)

(a) (b)

(c) (d)
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grids. The optimized designs can be seen in Fig. 3. It is espe-
cially interesting to note that the high design resolution and
small filter radius, leads to a design where the beams contain
internal holes.

The second minimum compliance example is the design
of a roof support for the Qatar Convention center as
described in Sasaki (2007). The design domain consists of a
rectangular domain of size 125×15×20 which, using sym-
metry conditions, corresponds to half of the design seen in
Fig. 4b. The domain is discretized using 512×64×86 = 3.1
million elements and the problem is solved using 12 CPUs
(72 cores). Finally, a volume fraction of 12 % and a filter
radius of rmin = 3.0 is used to obtain the design shown in
Fig. 4. The design of the roof support requires two exten-
sions to the default code: First a passive solid domain of size
125×15×1, i.e. the roof, is introduced and secondly a Heav-
iside projection continuation method (Guest et al. 2004) is
necessary due to the large filter radius used for the PDE
filter.

The third and final minimum compliance example con-
cerns pure torsion of a 1×1.2×1.2 box. The design problem
is inspired by the work of Lewinski (2004) and thus by
classical Michell truss layout (Michell 1904). The model
is loaded by a moment, i.e. four point forces on one side
and clamped on an equivalent area on the opposite surface.
Optimized designs for varying filter radii and volume frac-
tions can be seen in Fig. 5. Note that these examples are
computed on a bigger cluster with 320 nodes, each with
two ten Intel Xeon E5-2650 10-core CPUs. The design in
Fig. 5d was obtained using a mesh of 82.1 million ele-
ments distributed on 2000 cores, and the wall-clock time
for 2000 design cycles was approximately 4.5 hours. The
optimized designs show that for a sufficiently small volume
fraction the optimal structure is no longer a closed sphere

but a truss-like structure, similar to the result presented in
Lewinski (2004).

These examples demonstrate how the presented frame-
work can be used to gain new insight into ultra-lightweight
structures - even for the otherwise thoroughly studied mini-
mum compliance problem. An indepth examination of these
possibilities are left for a subsequent paper.

3.2 Material design

To demonstrate the versatility of the presented framework,
the physics is changed from static linear elasticity to elas-
tic material design. With respect to code complexity, this
implies that the LinearElasticity class is modified
to handle periodic boundary conditions, while only minor
modifications are needed for TopOpt and Filter classes.
The implementation of the homogenization procedure fol-
lows the approach given in Andreassen et al. (2014).

The first design problem is to optimize for isotropic min-
imum Poisson’s ratio materials. The optimized design can
be seen in Fig. 6. The Poisson’s ratio of the optimized struc-
ture is −0.80 computed using a volume fraction of 0.08 and
on a mesh of 2003 = 8 million elements. A lower bound on
the bulk stiffness is assured by requiring the bulk modulus
of material structure to be at least 1/4000 of the bulk mod-
ulus of the base material. This assures that no single node
hinges appear in the design. For filtering the PDE version
of the sensitivity filter has been used with an initial radius
of 10 %, decreased to a final radius of 2.5 %. It is interest-
ing to note that the high resolution leads to “line hinges”,
which is something that has not been clearly observed in
other 3D topology optimization results because the resolu-
tion has been too coarse. A close up of a “line hinge” is
shown in Fig. 6d.

Fig. 7 Optimized maximum
bulk modulus unit cell
discretized with 2883 = 23.8
million elements (a) and
2 × 2 × 2 unit cells (b). The
isotropic and optimized unit cell
has a bulk modulus within 99 %
of the Hashin-Shtrikman bounds
for a volume fraction of 30 %.
The red surface in (b) indicate
that a unit cell has been cut to
illustrate that it is indeed hollow

(a) (b)
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The second material design problem is the maximiza-
tion of the bulk modulus. The optimized design can be seen
in Fig. 7. The volume fraction is 30 %. The resulting bulk
modulus is within 99 % of the optimal modulus for porous
materials, i.e. the Hashin-Shtrikman bounds. The example
is run with a discretization of 2883 = 23.8 million elements
for which one iteration, i.e. solving six load cases, filter-
ing and design update, takes approximately 60s on 40 CPUs
(240 cores).

It should be emphasized that both design prob-
lems include an isotropy constraint (see e.g. Andreassen
2014), and that the negative Poisson’s ratio structure
would be difficult to manufacture due to the small
features.

4 Concluding remarks

A framework for large scale topology optimization on
structured grids is presented and made publicly available
at www.topopt.dtu.dk/PETSc. The framework is based on
PETSc and forms an easy-to-use, fully parallelized and open
source base for conducting large scale topology optimiza-
tion. Included in the framework is a number of key building
blocks for structural optimization such as filters, a simple,
parallelized MMA and input/output classes.

The validity and performance of the framework is
demonstrated through a number of numerical examples cov-
ering both compliance and material design. It is shown
that the framework can be used to solve optimization
problems with more than 100 million design variables,
and thus that the problem size is only bounded by the
amount of computational resources available. The versatil-
ity of the framework is exemplified by extensions such as
projection methods, passive domains and homogenization
problems.
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