Noname manuscript No.
(will be inserted by the editor)

Efficient topology optimization in MATLAB using 88 lines of code

Erik Andreassen - Anders Clausen - Mattias Schevenels- Boyan S. Lazarov - Ole
Sigmund

Received: date / Accepted: date

Abstract This paper presents an efficient 88 line MATLAB 1 Introduction
code for topology optimization. It has been developed using
the 99 line code presented u@OOl) as a starting ATLAB is a high-level programming language that allows
point. The original code has been extended by a densitfor the solution of numerous scientific problems with a
filter, and a considerable improvement in efficiency has beeminimum of coding effort. An example is Sigmund’'s 99
achieved, mainly by preallocating arrays and vectorizindine topology optimization codm 01). The 99
loops. A speed improvement with a factor of 100 is achievedine code is intended for educational purposes and serves
for a benchmark example with 7500 elements. Moreoveras an introductory example to topology optimization for
the length of the code has been reduced to a mere 88 linestudents and newcomers to the field. The use of MATLAB,
These improvements have been accomplished withowtith its accessible syntax, excellent debugging tools, and
sacrificing the readability of the code. The 88 line codeextensive graphics handling opportunities, allows the use
can therefore be considered as a valuable successor to tlee focus on the physical and mathematical background
99 line code, providing a practical instrument that mayof the optimization problem without being distracted by
help to ease the learning curve for those entering the fieltechnical implementation issues. Other examples of simple
of topology optimization. The complete 88 line code iSMATLAB code used to provide insight in finite element
included as an appendix and can be downloaded from th&nalysis or topology optimization include a finite element
web sitewww . topopt . dtu.dk. code for the solution of elliptic problems with mixed
boundary conditions on unstructured grima al,

This is uncorrected version of the paper: Efficien). a similar_code for problems in linear elasticity

topology optimization in MATLAB using 88 lines of code, _ l'LZQ-le_)' a topology optimization code for
E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazardy°MPliant_mechanism_design_and for heat conduction

and O. Sigmund3ruct Multidisc Optim, 43, pp 1-16, 2011 pro.blems[LBTeﬂd-s_e_e_and_S_Lgml{hqjqorshjﬁgde for Pareto-
optimal tracing in topology optimizatio 10), a

discrete level-set topology optimization c)

and a level set Scilab 2D optimization cotle (Allaire, 2009).
Keywords Topology optimization MATLAB - Education Compared to high performance programming languages
Computational efficiency such as C++ and Fortran, however, MATLAB is generally

perceived to be far behind when it comes to computational

power. This can partly be explained by (1) the fact that many

E. Andreassen, A. Clausen, O. SigmtinB.S. Lazarov users apply the same programming strategies as in Fortran
Department of Mechanical Engineering, Solid Mechanics,

Technical University of Denmark, Nils Koppels Alle, B. 404, or C++, such as the eXtenS'Ve_ usefoﬁ'” andwhile loops,
DK-2800 Lyngby, Denmark and (2) the fact that MATLAB is relatively tolerant towards
*E-mail: sigmund@mek.dtu.dk bad programming practices, such as the use of dynamically
M. Schevenels growing variable arrays. In both cases the potential of
Department of Civil Engineering, K.U.Leuven, MATLAB is far from optimally utilized. Efficient use

Kasteelpark Arenberg 40, B-3001 Leuven, Belgium of MATLAB implies loop vectorization and memory

file:www.topopt.dtu.dk

2

preallocationkMaIMo;iMlO). Loop vectorizati®ni the code that have changed with respect to the original
the use of vector and matrix operations in order to avoid®9 line code. These two sections constitute the core of
for andwhile loops. Memory preallocation means that the paper. The remaining sections have a supplementary
the maximum amount of memory required for an array ischaracter, addressing variants of and extensions of the 88
reserved a priori, hence avoiding the costly operation ofine code and discussing its performance. Seéfion 4 present
reallocating memory and moving data as elements are addégdo alternative implementations of the filtering operation
to the array. Loop vectorization and memory preallocationThe first alternative is based on the built-in MATLAB
are used in combination with a number of more advancedonvolution operator functiorconv2. This modification
performance improving techniques in the MILAMIN code, implies a further reduction of the code to 71 lines, at the
a MATLAB program capable of solving two-dimensional expense of its readability for those unfamiliar with the
finite element problems with one million unknowns in oneconv2 function. The second alternative is based on the
minute on a desktop computér (Dabrowski bLaI_,_iOOS). application of a Helmholtz type partial differential eqgjoat

In the 99 line topology optimization code, the perfor-to the density or sensitivity field_(Lazarov and Sigmund,
mance of several operations (such as the filtering procedu@010). This approach allows for the use of a finite
and the assembly of the finite element matrices) caglement solver to perform the filtering operation, which
be increased dramatically. Partly by properly exploitingreduces the complexity of the implementations in serial
the strengths of MATLAB (using loop vectorization and and parallel machines, as well as the computational time
memory preallocation), partly by restructuring the pragra for large problems and complex geometries. Secfibn 5
(moving portions of code out of the optimization loop sogives a brief idea on how to extend the 88 line code to
that they are only executed once), a substantial increase fifoblems involving different boundary conditions, mulkip
efficiency has been achieved: for an example problem withoad cases, and passive elements. Furthermore, the iniclusi
7500 elements, the total computation time has been reduc&fl a Heaviside filter in order to obtain black-and-white
by a factor 100. In addition, the original code has beersolutions is elaborated in more detail. In sectldn 6, the
extended by the inclusion of density filtering, while recdggi ~ performance of the 88 line code and its variants is examined.
the length of the code to only 88 lines. The computation time is analyzed for three benchmark

The aim of this paper is to present the 88 line code. examples solved with both the original 99-line code and the
should be considered as a successor to the 99 line cod@@W versions of the code. The memory usage of the new
and it is published with the same objective: to providecode is also briefly discussed.
an educational instrument for newcomers to the field of
topology optimization. The main improvements with respect
to the original code are the increased speed and the inolusi® Problem formulation
of a density filter. These are relevant improvements, as
the 99 line code has been downloaded by a large numbahe MBB beam is a classical problem in topology opti-
of people since 1999 and is still used as a basis for newization. In accordance with the original padﬁr__(_s_%émnd,
developments in the field of topology optimization. Thelm), the MBB beam is used here as an example. The
code has been downloaded from more than 15000 uniqugesign domain, the boundary conditions, and the external
users. The density filter is a useful addition as it paves thépad for the MBB beam are shown in figuré 1. The aim
way for the implementation of more modern filters suchof the optimization problem is to find the optimal material
as the Heaviside filters proposed|by Guestlet al (2004) andistribution, in terms of minimum compliance, with a
7). constraint on the total amount of material.

As the present text is conceived as an extension of the
paper byLé_i.’JTmun\dL(_ZQ_bl), the reader is assumed to be
familiar with the contents of the original paper and the 99
line code. Large parts of the 88 line code are identical to the
original 99 line code, and the same notation is adopted. This
approach is followed in an attempt to minimize the effort
required to upgrade to the new implementation.

The paper is organized as follows. The topology I
optimization problem is formulated in sectigd 2. As in W
the Orlgmal paper, the _focus IS reStTICted to mmlmumFig.l The design domain, boundary conditions, and external load f
compliance problems with a constraint on the amounthe optimization of a symmetric MBB beam.
of material available. The 88 line code is explained in
section[B. Special attention is paid to the portions of

2.1 Modified SIMP approach wherem is a positive move limity) (= 1/2) is a numerical
damping coefficient, ané. is obtained from the optimality

The design domain is discretized by square finite elementsondition as:

and a “density-based approach to topology optimization” is

followed; i.e. each elementis assigned a density, that e

determines its Young’s modulus.: B. = % (4)
A

L, (xe) = Enin + !Eg (EO - Emin)v Te € [0, 1] (1) Oe

where E, is the stiffness of the materialE,,;, is a 'Where the Lagrangian multiplier must be chosen so that
very small stiffness assigned to void regions in order tghe volume constraint is satisfied; the appropriate value ca
prevent the stiffness matrix from becoming singular, and®® found by means of a bisection algorithm.

p is a penalization factor (typically = 3) introduced to The sensitivities of the objective function and the
ensure black-and-white solutions. Equatigh (1) corredpon Material volumel” with respect to the element densities

to the modified SIMP approach, which differs from the &€ given by:

classical SIMP approach used in the original paper in .

the occurrence of the termn,. In the classical SIMP = = —pal ™ (Ey — Ewin)u, kou 5)
approach, elements with zero stiffness are avoided by,
imposing a lower limit slightly larger than zero on the =1 (6)

densitiest.. The modified SIMP approach has a number of e
advantagemmm), most importantly that it alow Equation [6) is based on the assumption that each element
for a straightforward implementation of additional filteas has unit volume.
illustrated in sectiohl5.
The mathematical formulation of the optimization

problem reads as follows: 2.3 Filtering
N . .
. In order to ensure existence of solutions to the topology
. _ T _ T

e c(x) = U'KU = ; Ee(we)uc koue optimization problem and to avoid the formation of checker-
subjectto: V(x)/Vo = f B (2) board patterns. (Diaz and Si nd. 1995; Jog and Haber,
KU=F 11996;| Sigmund and Peterss 998), some restriction on

0<x<1 the design must be imposed. A common approach is

the application of a filter to either the sensitivities or
where ¢ is the compliance,U and F are the global the densities. A whole range of filtering methods is
displacement and force vectors, respectivElys the global thoroughly described v Sigmu 07). In addition to the
stiffness matrixu. is the element displacement vectf, sensitivity filter (Sigmund, 199 7), which is already
is the element stiffness matrix for an element with unitimplemented in the 99 line code, the new 88 line code
Young's modulusx is the vector of design variables (i.e. also includes density filtering_(Bruns and Tortorelli, 2001
the element densities) is the number of elements used to |[Bourdin, 20011).
discretize the design domail(x) andV; are the material The sensitivity filter modifies the sensitiviti®s/dz. as
volume and design domain volume, respectively, gnd follows:
the prescribed volume fraction.

dc 1 dc
- Heil'i_ (7)
. .) 3t 2
2.2 Optimality criteria method i, ¢

The optimization problem[{2) is solved by means of awherelV, is the set of elementsfor which the center-to-
standard optimality criteria method. A heuristic updatingcenter distancel(e, i) to element is smaller than the filter
scheme identical to the scheme used in the original papéadiusryi, andH.; is a weight factor defined as:
is followed:
H.; = max (0, rmin — A(e, 1)) (8)
max(0,z, —m) If z.B? < max(0,z. —m))) . .
The term~y (= 1073) in equation [(¥) is a small positive
number introduced in order to avoid division by zero. This
z.B] otherwise is a difference as compared to the original paper, where
(3) the classical SIMP approach is used. In the classical SIMP

g™ = min(l,z. + m) if z.B? > min(l,z. —m)

approach, the density variables cannot become zero, and the The most obvious differences between the 88 line code

term~ is not required. and the 99 line code are the following: (1) tier loops
The density filter transforms the original densitiesas used to assemble the finite element matrices, to compute the
follows: compliance, and to perform the filtering operation have been
1 vectorized, (2) the remaining arrays constructed by means
Te = —<— Z Heix; (9) of a for loop are properly preallocated, (3) a maximum
ZN Hei jen, amount of code is moved out of the optimization loop to
1€ Ne

ensure that it is only executed once, (4) a distinction isenad

In the following, the original densities, are referred to as between the design variablesand the physical densities

the design variables. The filtered densitiesare referredto xPhys in order to facilitate the application of a density filter,

as the physical densities. This terminology is used to streand (5) all subroutines have been integrated in the main

the fact that the application of a density filter causes thdérogram.

original densitiesz, to loose their physical meaning. One ~ The 88 line code consists of three parts: the finite

should therefore always present the filtered density field element analysis, the sensitivity or density filter, and the

rather than the original density field as the solution to the optimization loop. These parts are discussed in detail in

optimization prob|enmyﬂo7)_ subsections 311 {0 3.3. Subseciion 3.4 presents somesresult
In the case where a density filter is applied, theobtained with the 88 line code.

sensitivities of the objective function and the material

volumeV with respect to the physical densiti@s are still

given by equationd{5) anfl(6), provided that the variable3.1 Finite element analysis

x. IS replaced withz.. The sensitivities with respect to the

design variables; are obtained by means of the chain rule:The design domain is assumed to be rectangular and

discretized with square elements. A coarse example mesh

o _ Z af/’ 0%e _ Z #Hjea_f/’ (10) consisting of 12 elements with four nodes per element and
Oz eeN; 0% Oz; cEN; Z He; Ot two degrees of freedom (DOFs) per node is presented in
i€N, figure[2. Both nodes and elements are numbered column-

wise from left to right, and the DOF&n — 1 and 2n

correspond to the horizontal and vertical displacement
of node n, respectively. This highly regular mesh can
be exploited in several ways in order to reduce the
3 MATLAB implementation computational effort in the optimization loop to a minimum.

where the function) represents either the objective function
c or the material volumé’.

In this section the 88 line MATLAB code (see appendix) is
explained. The code is called from the MATLAB prompt by 1.2 9,10 17,18 25,26 33,34

N N

means of the following line: S ; 4 7 10
top88(nelx,nely,volfrac,penal,rmin,ft) ;; 3.4 11,12 19.20 27,28 35,36

Wh(_erenelx and nel_y are thg number of.elements in the §3 5.6 2 13’152 21’282 29’3101 37.38

horizontal and vertical direction, respectivelyglfrac is N

the prescribed volume fractioff penal is the penalization EC 3 6 9 12

power p, rmin is the filter radiusry,;, (divided by the N8 55,16 s S92 39,40

element size), and the additional argument (compared to /

the 99 line code¥t specifies whether sensitivity filtering Fig. 2 The design domain with 12 elements.

(ft = 1) or density filtering £t = 2) should be used.

When sensitivity filtering is chosen, the 88 line code yields

practicallﬂ the same results as the 99 line code; e.g. the The finite element preprocessing part starts with the
optimized MBB beam shown in figure 1 of the original definition of the material properties (lines 4-&p is the
paper bMdﬂbl) can be reproduced by means ofoung’s modulusEy, of the material Emin is the artificial

the following function call: Young’s modulusE,,;, assigned to void regions (or the
Young’s modulus of the second material in a two-phase
design problem), angh is the Poisson'’s ratio.

1 The slight difference which can be observed between théngs-I Next the element stiffness matdiy for an element with
and the 99-line code is due to the difference in the SIMP fdatian. unit Young’s modulus is computed (lines 8-12). This matrix

top88(60,20,0.5,3,1.5,1)

is denoted a%E. Due to the regularity of the mesh, this using the index vectorsk and jK and the vector with non-

matrix is identical for all elements. zero entriessk. This procedure could be further improved
In order to allow for an efficient assembly of the by using thesparse2 function from CHOLMOD ,
stiffness matrix in the optimization loop, a matedofMat), which is faster than the standard MATLABarse

is constructed (lines 13-15). Theth row of this matrix function due to the use of a more efficient sorting algorithm
contains the eight DOF numbers corresponding toittie for the indices, but this is beyond the scope of the present
element (in a similar way as thelof vector in the original paper. The second statement on line 55 ensures that the
99 line code). The matrigdofMat is constructed in three stiffness matrix is perfectly symmetric in order to avoidih
steps. First, dnely + 1) x (nelx + 1) matrixnodenrs ~ MATLAB uses a less efficient algorithm to solve the system
with the node numbers is defined. Next, this matrix is usedf finite element equations.

to determine the first DOF number for each element, which The boundary conditions and the load vector are defined
are stored in theely x nelx matrixedofVec. Finally, the on lines 18-23. These lines are almost identical to those in
matrix edofVec is reshaped into a column vector and usedhe original 99 line code and are therefore not discussed in
to determine the eight DOFs for each element. The resultihe present paper. The main difference with the originaécod
are collected in the matrixdofMat. For the example mesh is that these lines are moved out of the optimization loop.
shown in figur€R, this procedure yields the following result ~ The system of finite element equations is finally solved

on line 56.
3 411129101 27 <« Elementl
5 6 13141112 3 4 «— Element 2
7 815161314 5 6 «— Element 3 _
.2 Fil
edofMat = | 111219201718 9 10| < Element4 -2 "lering

oo The application of a sensitivity filter according to
| 31 323940 37 3829 30 | « Element 12 equation [(¥) involves a weighted average over different
elements. This is a linear operation; it can therefore be
In each iteration of the optimization loop, the assemblyimplemented as a matrix product of a coefficient matrix
of the global stiffness matriK is efficiently performed by and a vector containing the original sensitiviti@s/dz;
means of theparse function in MATLAB, so avoiding the (multiplied with the design variables;). Dividing the
use offor loops. The procedure followed here is inspiredresult by a factomax(y, z.) >, . He: yields the filtered
by the approach described w\@%?). Eparse sensitivities)c/dzz.. This operation is performed on line 64.
function takes three vectors as input arguments: the firsSthe matrixi and the vectoHs contain the coefficientsl,;
and second contain the row and column indices of the norand the normalization constarts, . . H.;, respectively.
zero matrix entries, which are collected in the third vector ~ The use of a density filter not only imply filtering of
Specifying the same row and column indices multiple timeshe densities according to equati@h (9) but also a chain rule
results in a summation of the corresponding entries. modification of the sensitivities of the objective function
The row and colums index vectorsiK and jK, and the volume constraint according to equatipnl (10).
respectively) are created in lines 16-17 using ¢defMat Both operations involve a weighted average over different
matrix. Use is made of a Kronecker matrix product with aelements. The density filtering is performed on line 77, the
unit vector of length 8, followed by a reshaping operation.modification of the sensitivities on lines 66-67. Use is made
The resulting vectorsK and jK are structured so that the of the same coefficientsand normalization constarits as
indicesiK(k) andjK(k) correspond to théi, j)-th entry of described above.
the stiffness matrix for elemenatwherek =i +8(j — 1) + Both the matrixH and the vectoHls remain invariant
64(e — 1). during the optimization and are computed a priori. The
The third vector, containing the entries of the sparsgnelx x nely) x (nelx x nely) coefficient matrixH
stiffness matrix, is computed in the optimization loop €lin establishes a relationship between all elements. However,
54), as it depends on the physical densittesThis vector as the filter kernel defined in equatidd (8) has a bounded
sK is obtained by reshaping the element stiffness matix support, only neighboring elements affect one another. As a
to obtain a column vector, multiplying this vector with the consequence, the majority of the coefficients is zero and the
appropriate Young’'s moduluB, (z.) for each element, and matrixH is sparse. It is constructed by means of the built-in
concatenating the results for all elements. The multifiica. sparse MATLAB function. Row and column index vectors
and concatenation are implemented as a matrix produgt and jH as well as a vectogH with non-zero entries are
followed by a reshaping operation. assembled by means of four nestid loops on lines 25-
The actual assembly of the stiffness matix is 42. In order to avoid continuous resizing of these vectors as
performed on line 55 by means of tkg@arse function, entries are added, a sufficient (but slightly too high) antoun

of memory is preallocated. The entries that remain unusedpproach, this is no longer true due to the modification of
in the vectorsiH, jH, andsH have no effect: they preserve the sensitivities performed on line 67. The second change is
their initial value (1, 1, and 0, respectively) and result instrictly speaking not necessary: the density filter is vadum
the addition of a zero term to the first element of the sparspreserving, which means that the volume constraint can
matrix H. The assembly of the matrit from the vectors equally well be evaluated in terms of the design variables.
iH, jH, andsH is performed on line 43. The vectds is When another (non-volume-preserving) filter is applied,
subsequently computed on line 44. however, it is absolutely necessary to evaluate the volume
constraint in terms of the physical densities. The third
change is simply made to optimize the balance between
accuracy and computation speed.

Finally, the intermediate results are printed (lines 84-85
The main part of the 88 line code is the optimization loop.2nd plotted (line 87) in the same way as in the original 99
The loop is initialized on lines 46-49. All design variables line code.

z. are initially set equal to the prescribed volume fraction The optimization loop is terminated when the, norm
f. The corresponding physical densitizsare identical to of the difference between two consecutive designs (in terms
the design variables,: in the sensitivity filtering approach, ©f design variables) is less than 1 percent.
this equality always holds, while in the density filtering
approach, it holds as long as the design variables represent
- - : ; 3.4 Results
a uniform field. For other types of filters (especially non-
volume-preserving filters), it may be necessary to comput

the initial physical densitieg. by explicit application of different mesh sizes are considered, consistingook 20

the _f||_t§r to the |n|t|a_l deS|gn variables,, and to adjust elements]50 x 50 elements, and00 x 100 elements. The
the initial design variables in such a way that the volume

o - : . e volume constraint is set t&0 % and the usual valug = 3
constraint is satisfied (as this constraint is specifiedrim¢e . o .
. o is used for the penalization exponent. The problem is solved
of the physical densities,).

. . o . using sensitivity and density filtering. The filter raditsi,,
Each iteration of the optimization loop starts with the d y Y 9 s

equals 0.04 times the width of the design domain, i.e. 2.4, 6,

gzitgglement analysis as described in subseéfidn 3.ls(lineand 16 for the different meshes.

_— . _) Figure[3 shows the optimized designs. The figures
Next, the objective function (_the__comphance) IS demonstrate that both sensitivity filtering and density
computed, as well as the sensitivitieg: and dv of

b biective f i d th | s . hfiltering suppress checkerboard patterns and lead to mesh
the objective unctpn an F.e volume constraint wit independent designs; refining the mesh only leads to a
respect to the physical densities (lines 58-61). Compareglnement of the solution, not to a different topology.

to the original 99 line code, efficient use is made of the

edofMat matrix to compute the compliance for all elements

simultaneously: thedofMat matrix is used as an index into 4 Alternative implementations

the displacement vectdr resulting in a matrix with the size

of edofMat that contains the displacements correspondinghis section presents two alternatives to the 88 line code

to the DOFs listed irdofMat. discussed in the previous section. The focus is on the
The sensitivities are subsequently filtered (if sensitivit implementation of the filters.

filtering is used) or modified (if density filtering is used) as The first alternative makes use of the built-in MATLAB

explained in subsectidn 3.2 (lines 63-68). functionconv?2. This approach is mathematically equivalent
On lines 70-82, an optimality criteria method is used toto the implementation presented in the previous section,

update the design variables according to equafibn (3). Thend it allows for a reduction of the code to 71 lines.

update is performed in a similar way as in the original 99A possible disadvantages of this approach is that it may

line code, except that (1) the sensitivily of the volume obfuscate the filtering procedure for readers unfamilidhwi

constraint is explicitly taken into account, (2) the Laggan the conv2 function and that its applicability is limited to

multiplier 1mid is determined using the physical densitiesregular meshes.

instead of the design variables, and (3) the stop condition The second alternative presents the use of filtering

is specified in relative terms. The first change is made fobased on a Helmholtz type partial differential equation.

the sake of the density filter: in the sensitivity filtering This approach allows for the use of a finite element

approach, the sensitivitiesr are identical for all elements solver to perform the filtering operation, which speeds

and can therefore be omitted from the definition of theup significantly the filtering process in 3D and simplifies

heuristic updating facto3., but in the density filtering parallel implementations of filtered topology optimizatio

3.3 Optimization loop

The 88 line code is used to optimize the MBB beam. Three

AV AN AN AN

Fig. 3 Optimized design of the MBB beam obtained with the 88 lineecading sensitivity filtering (top) and density filtering ¢tmm). A mesh
with (a) 60 x 20 elements, (b)50 x 50 elements, and (¢J00 x 100 elements has been used.

problems. The results obtained with the PDE filter are The non-zero part of the filter kern&l(m,n) can be

similar to the ones obtained by using an exponentiallyexpressed as all x N matrix h defined as:

decaying filter kernel (Bruns and Tortorelli, 2001).
h(m+%,n+%) =H(m,n) (13)

Introducing equation[{13) in equatiol_{11) yields the

4.1 Filtering using the CONV?2 function . .
following expression:

The optimization problem discussed in the previous

sections has two properties that allow for a more concise > P (g 20 g M) T)

. m,n

implementation. First, a rectangular mesh consisting of:(x ;) = (14)
rectangular (square) finite elements is used. Second, the Zh(mwt%,w#)

m,n

filter kernel is invariant in space (or, loosely speaking th

filter radiusryi, is the same at all positions in the designThe sum in the numerator corresponds to the)-th ele-
domain). As a consequence, the filtering operation can bgent of the central part of the two-dimensional convolution
interpreted as a two-dimensional discrete convolution. Inyf the matricesc andh. which is obtained in MATLAB as
the following paragraphs, the convolution based appra@ch iy (x 1, >same’). The sum in the denominator must
elaborated for the filtering of the densities. The filtering 0 e taken over the same indices. which is most easily

modification of the sensitivities can be addressed in aamil accomplished by using the same MATLAB code as for the

way. o o _ . numerator, substituting the matrix with a unit matrix of
The density filter, defined in equation (9), is reformu-ihe same size.
lated as follows: Using the convolution based approach for the density
filter, the modification of the sensitivities, and the sewisjt
ZH(m’”)x(k—mvl—") filter allows for a reduction of the 88 line code to 71 lines.
By = (11) Three modifications are required.
ZH(W”) First, the preparation of the filter (lines 25-44) is
mn replaced with the following lines:

wherez; ;) andz(; ;) denote the design variable and the [dy,dx] = meshgrid(-ceil(rmin)+1:ceil(rmin)-1, ...

physical density, respectively, for the element in#tle row . © 2ni . »2‘261}3‘;“)*1 :ceil (rmin)-1);
. . . = - ."2+dy. ;

and thej-th column. The filter kernet (i, n) is a function e, T sAr e 2

!) Hs = conv2(ones(nely,nelx),h,’same’);
of the discrete variables andn:
where the matrix is the non-zero part of the filter kernel

H(m,n) = max (0, rmin — 0(m,n)) (12) and the matrixtis represents the sum in the denominator
on the right hand side of equatioh_{14). This sum does

where 6(m,n) represents the center-to-center distancenot change during the optimization loop and is therefore

between two elements separatedfbyows andn columns. computed in advance. Note that the matiix computed

Both sums in equatiofi {11) must be taken over all indiceere is identical to the matriks in the 88 line code.

m andn for which the kernetH(m, n) is non-zero and for Second, the filtering or modification of the sensitivities

which (k — m, [— n) refers to an existing element. (lines 63-68) is replaced with the following code:

if ft == 1 PDE [I5) is obtained by an iterative method. Therefore,
de = conv2(dc.*xPhys,h,’same’) ./Hs./max(1e-3,xPhys); for large filter radius, especially in 3D, the PDE filtering
elseif ft == 2 scheme should be the preferred choice. In the presented

dc = conv2(dc./Hs,h,’same’); . .

dv = conv2(dv./Hs,h,’ same’); 2D examples with regular mesh, the concept will not result
end in improved performance, however, we include it here for
educational reasons and inspiration.

A FEM discretization of equation (15) leads to the

following system of linear equations

KF)EN = TFX (18)

Third, the filtering of the densities (line 77) is replaced
with the following line:

xPhys = conv2(xnew,h,’same’)./Hs;

whereK r is the standard FEM stiffness matrix for scalar

4.2 Filtering based on Helmholtz type differential equasio Problems,Tr is a matrix which maps the element design
valuesx to a vector with nodal values, angdy is the

The density filter given by[{9) can be implicitly representednodal repre_sentation Qf the fiI.tere.d field.- The element-wise
by the solution of a Helmholtz type partial differential representation of the filtered field is obtained as

equation (PDE)(Lazarov and sigmgljh_d_,jOlO), with homos, _ Tl xy (19)

geneous Neumann boundary conditions

o The PDE filter requires minor modifications of the 88 line
—r2V2 4) =) (15) code and reduces it to 82 lines. The preparation of the filter
A (lines 25-44) is replaced with the following lines
9n Rmin=rmin/2/sqrt(3);

on (16)
KEF=Rmin"2x[4 -1 -2 -1; -1 4 -1 -2;...

where 1) is a continuous representation of the unfiltered -2 -1 4-1; -1 -2 -1 41/6 + ...
design field, andy is the filtered field. The solution 4 21 25 2 4 2 1;...
of the above PDE can be written in the form of a L2042 21 2 41/36;

] i . R . . edofVecF=reshape (nodenrs(1:end-1,1:end-1) ,nelx*nely,1);
convolution integral which is equivalent to the classical .4o¢MatF=repnat (edotvecF,1,4). ..
filter. The parameter in (I8) plays a similar role as +repmat ([0 nely+[1:2] 1],nelx*nely,1);
Tmin in aa) An approximate relation between the |ength iKF=reshape (kron (edofMatF ,ones(4,1))’,16*nelx*nely,1);
scales for the classical and the PDE filter is given by JKF-reshape (kron (edofMatF, ones (1,4))°, L6+nelx*nely, 1);

Lazarov and Siam b_(;dlo)i :ﬁ:;:::}zgf};;;?:;E;?(l’nelx*nelwJG*nelX*nely’l);
LF=chol (KF, ’lower’);
r= Tmin/2\/§ (17) iTF=reshape (edofMatF ,4*nelx*nely,1);
jTF=reshape (repmat ([1:nelx*nely],4,1)’,4*nelx*nely,1);
The PDE filter is volume preserving, i.e., the volume of the sTF=repmat (1/4,4*nelx*nely,1);
input field is equal to the volume of the filtered field. The TF=sparse QiTF,jTF,sTF);
same idea can be applied as a sensitivity filter with inpuivhere KF corresponds to the tangent filter matrix and
field in (I8) replaced by) = x% and output field given by TF corresponds to the transformation matrix on the right
)= z% (Lazarov and Sigmund, 2009). hand side of equatiori_(IL8). In order to keep readability
The filter properties have been discussed extensivel9f the Matlab code, the linear system obtained by FEM
by ILazarov and Sigmuhd (2010), and here only the mairliscretization of[(Ib) is solved by factorization instedd o
advantages with respect to memory usage and Computﬁerative method, which hides some of the filter advantages.
tional cost are highlighted. The classical filter requiresThe second modification is a replacement of the filtering
information about the neighbor elements, which forirregul modification of the sensitivities (lines 63-68) with the
meshes and complex geometries is obtained by a relativefgllowing code:
expensive search. Clearly the approach presented earlier i it ft == 1
Section 3.2 speeds up the filtering process if the search dc(:) = (TF?*(LF’\(LF\(TF*(dc(:) .*xPhys (:)))))) ...
procedure is performed only once as a preprocessing step, /max(le=3,xPhys (:));

elseif ft == 2

however, the computational complexity, as well as the dc(:) = TF’*(LF’\ (LF\ (TF*dc(:)))) ;
memory utilization, are proportional teg,, in 2D and to dv(:) = TF’*(LF’\(LF\(TF*dv(:))));
r3in in 3D respectively. In contrast the PDE filter approach ~ end

utilizes the mesh used for the state problem and does n@hird, the filtering of the densities (line 77) is replacedtwi
require any additional information, which avoids excessiv the following line

memory usage. Furthermore the computational cost depends

. - . xPhys(:) = (TF’>*(LF’\(LF\(TF*xnew(:)))));
linearly on the length parameterif the solution of the Y

AVANRVANAN

Fig. 4 Optimized design of the MBB beam obtained with the varianthef 88 line code using PDE based sensitivity filtering (tam) density
filtering (bottom). A mesh with (a§0 x 20 elements, (b)50 x 50 elements, and (c300 x 100 elements has been used.

5 Extensions to the original density filter; fof approaching infinity, the
approximation approaches a true Heaviside step function. |
Sigmund (2001) describes how to extend the 99 linerder to avoid local minima and ensuring differentiability
code to account for different boundary conditions, mudtipl in the optimization, a continuation scheme is used where
load cases, and passive elements, and how to replagee parametef is gradually increased from 1 to 512 by
the optimality criteria based optimizer with a more doubling its value every 50 iterations or when the change in
general optimization scheme. The readers interested i@rms of design variables between two consecutive designs
implementing these extensions into the 88 line code arBecomes less than 0.01.
referred to Sigmund’s original paper, as the modifications |t should be noted that Guest et al (2004) include an
required are almost the same as for the 99 line codextraterm in equatiofi{20) to ensure that the lower bound on
Following the guidelines given by Bendsge and Sigmundhe densities, is satisfied; this term is not necessary here
(2003), the 88 line compliance minimization code can bejue to the use of the modified SIMP approach (Sigmund,
changed to a code for mechanism synthesis or for heatpq7).
conduction problems. The sensitivities of a functiofi(z.) with respect to the

The present paper focuses in detail on a furthefytermediate densities. are obtained by means of the chain
extension, i.e. the implementation of black/white pra@tt je:

filters. Due to the vectorization of loops in the 88 line

code, this is a relatively straightforward task only iniaty ~ 0f _ 9f 9z

a limited number of modifications. As an example, thedz, 0z, 0Z.

implementation of the filter proposed by Guest et al (2004)

is explained. This filter is referred to as the HeavisideVhere the derivative of the physical densitywith respect

projection filter in the present paper. The aim of thetO the intermediate density. is given by:

Heaviside projection filter is (1) to achieve a minimum

length scale in the optimized design, and (2) to obtain black :fe

and-white solutions. Guest et al (2004) apply this filtengsi Oz,

nodal design variables, but as shown by Sigmund (2007), it _ : e :

is equally applicable when element design variables ame use The |mpl_eme_ntat|on_of the Heay|3|de filter in the 8.8 line

(which is the case in the present paper). codg as gthlrd filter optiort¢ = 3) involves the following
The Heaviside filter is a modification of the original mod|f|cat|ons. i

density filter [9) with a Heaviside step function that progec 'St the/3 parametereta) must be defined and the

the densityz, (from now on called the intermediate density) densities myst be flltlered bgfore the start (?f the opﬂmm;ﬂ

to a physical density, . The physical density. equals one Ipop. To this end, line 47 is replaced with the following

if z. > 0 and zero ifz, = 0. In order to allow for the lines:

use of a gradient-based optimization scheme, the Heaviside veta = 1;

(21)

= Be PP 4 (22)

function is replaced with the following smooth function: if ft =1 || ft == 2
B xPhys = x;
Te=1-— e PTe 4 iee_ﬁ (20) elseif ft ==
i xTilde = x;
The parametep controls the smoothness of the approxi- xPhys = 1-exp(-beta*xTilde)+xTildexexp(-beta);

mation: for3 equal to zero, the Heaviside filter is identical end

10

This code will lead to initial physical densities that do of the optimization problem (Sigmund, 2009; Wang &t al,
not satisfy the volume constraint, which could be avoide).
by adjusting the initial values of the design variables
In the present code, however, the optimality criteria updat
scheme is relied upon to correct the violation of the volume
constraint. 6 Performance
Second, the modification of the sensitivities is accom-
plished by inserting the following supplementasyseif 6.1 Computation time
statement on line 68:

) _ In this subsection, the computation time for the 88 line code
elseif ft == 3

dx = beta*exp(-betaxxTilde)+exp(-beta); (and the variants presented sectibhs 4 [@nd 5) is compared
dc(:) = H*(dc(:).*dx(:)./Hs); with the original 99 line code. The example problem
dv(:) = Hx(dv(:).*dx(:)./Hs); introduced earlier is considered as a benchmark problem,

Third, the application of the Heaviside filter to the USing the same parameter values as in subsecfibn 3.4 (except

densities is realized by means of the following additionalf©r the implementation with the Heaviside filter, where a
elseif statement, to be inserted on line 78: reduced filter radius,.,;,, is used, as explained in sectidn 5).

elseif ft ==
xTilde(:) = (H*xnew(:))./Hs;

xPhys = 1-exp(-beta*xTilde)+xTilde*exp(-beta); Table 1 Computation time in seconds per iteration for the optinidzat

of the MBB beam using sensitivity filtering.

Finally, the continuation scheme for the regularization

o)) X Mesh size 6020 150x50 300 x 100
parametep is implemented by inserting the following block

of code at the end of the optimization loop: 99 line code 0.65 75.19
88 line code 0.15 0.72 1.85
if ft == 3 && beta < 512 && ... CONV2 based filtering code 0.13 0.69 1.98
(loopbeta >= 50 || change <= 0.01) PDE based filtering code 0.13 0.78 2.18

beta = 2xbeta;
loopbeta = 0;

change = 1;
fprintf (’Parameter beta increased to %g.\n’,beta); Table[1 gives an overview of the computation time in
end seconds per iteration for the optimization of the MBB beam

The additional countetoopbeta must be initialized and using sensitivity filtering. Results are given for four \aaris
incremented in the same way as the existing courdep of the optimization code and for three different mesh sizes.
The computation times have been determined as the average

The modified code is used to optimize the MBB beam. : . i AT)
The same parameter values are used as in subsgction Loyer the first ten iterations of the optimization loop, using

except for the filter radius, which is reduced to 0.03 times Lenovo Thinkpad X301 laptop With, an Intel CO".EZ Duo
the width of the design domain. The motivation for this U9400 processor, 2 GB memory, Windows XP with SP3

reduction is that the material resource constraint prédibi (32-bit x86), and MATL_AB .R2010a. It ',S cI.ear.fro.m the
the transformation of the topology obtained in the initial table that the new 88 line implementation is significantly

phase of the continuation scheme (which is similar to thdaster than the original 99 line code. For_the mesh Wit_h

topology obtained in subsectiBiB.4) into a black-and-avhit 99 X 50 elements, a factor of 100 speed improvement is

design consisting of bars with a large thickness. accomplished. The 99 line code has not been tested using
Figurel® shows the optimized design obtained with the1he mesh witt800 x 100 elements as the computation time

three meshes. The optimized design is almost perfectl?lecome_S gxceISS|ver Igrge. T-he combputa(;l?? tlme fo:jthe
black-and-white and does not exhibit structural detailsatemat'vem?p e.mer.1tat|0ns usiegnv2 base |ter|ng an-
PDE based filtering is almost equal to the computation time

smaller than the filter radius,;,. The Heaviside projection -
rfor the 88 line code.

filter relies on the compact support of the classical filte
function to impose length scale in the solid regions, and

therefore the Heaviside projection cannot be directlyiappl Table 2 Computation time in seconds per iteration for the optiniarat
with the PDE filter. It can be observed also that the minimurnbf the MBB beam using density filtering.

length scale imposed on the material distribution does ,
not prevent the occurrence of very small holes. This car” " Sz 60>20 15050 300100
be avoided by using a more advanced filter such as th&8 line code 0.12 0.94 5.67
morphological close-open or open-close filter_(Signmund,CONV2 based filtering code 0.16 0.78 3.30

. . .__'PDE based filtering code 0.19 1.79 10.08
) or by following a robust approach in the formulation rtenng

11

@) (b) (©

Fig. 5 Optimized design of the MBB beam obtained with the 88 lineecedtended by a Heaviside filter. A mesh with ¢a)x 20 elements, (b)
150 x 50 elements, and (cJ00 x 100 elements has been used.

Table[2 shows the results obtained with a density filterfootprint. The index vectorsK and jK and the vectokK
using the same configuration as for the sensitivity filter. Nowith non-zero entries are relatively large and remain in
results are given for the 99 line code as it does not includenemory throughout the entire optimization loop. Each of
a density filter. The computation time is slightly higherrtha these vectors has the size of the element stiffness matrix
for the sensitivity filter, due to the application of the digns times the number of elements, which is considerably more
filter in every iteration of the bisection algorithm used tothan the size of the stiffness matrix itself. Moreover, the
determine the Lagrangian multipliev. This is especially sparse function requires the index vectoix and jK to
true for the problem with the largest mesh, and for thebe defined as double precision arrays, prohibiting the use
code using PDE based filtering, where the application obf a more memory efficient integer type. In contrast to
the density filter involves a relatively costly backsuhgidn the sparse function built-in in MATLAB, the sparse2
operation. As the PDE based filter is volume-preservingfunction from CHOLMOD does accept integer type index
this could be avoided using the design variables insteadectors.
of the physical densities to check the volume constraint
in the bisection algorithm. The computational cost can
be significantly reduced by employing an iterative solver

(Lazarov and Sigmunfl, 2010). In order to get a rough idea of the memory requirements

for the 88 line code and its variants, an informal test has
been conducted: the example problem from the previous
Table 3 Computation time in seconds per iteration for the optimazat ~ Subsection has been solved multiple times, each time
of the MBB beam using Heaviside filtering. incrementing the mesh size, until the computer ran out
of memory. The same computer has been used as for
the determination of the computation time. The test has
been performed using both sensitivity and density filtering
leading to identical results.

Mesh size 60 x 20 150 x 50 300 x 100

Code with Heaviside filter 0.13 0.86 4.65

Finally, the performance of the code extended by a
Heaviside filter is described in tablé 3. Compared to the
standard density filtering code, the additional Heaviside The largest problem that could be solved with the 88
projection has no significant impact on the computatiorline code consisted af00 x 100 = 30000 elements. The
time. The computation time per iteration is slightly lower code usingconv2 based filtering requires less memory
due to the use of a smaller filter radius,, in the as it avoids the definition of the (sparse but nonetheless
example problem, which leads to a sparser coefficienrge) coefficient matri, using a small matri instead
matrix H, reducing the number of operations required tothat represents the non-zero part of the filter kernel. As a
multiply the coefficient matrixt with the design variables consequence, this code allowed for the solution of a problem
or the sensitivities. It should be noted, however, that thavith 700 x 233 = 163100 elements. The code based
use of the Heaviside filter requires the application of s0n PDE filtering performs in between and allowed us to

continuation scheme, which implies that the number ofOlve a problem witf600 x 200 = 120000 elements. The
iterations becomes Considerab|y|arger_ extension of the 88 line code with a Heaviside filter has

no noticeable influence on memory usage; however, due
to the use of a smaller filter radius,;, in the example
6.2 Memory usage problem, the coefficient matrik becomes sparser, and a
problem with 350 x 117 = 40950 elements could be
While the use of thesparse function to assemble the solved. The original 99 line code has not been tested, as the
stiffness matrix leads to a vast improvement in terms otomputation time becomes prohibitively large for problems
computation time, it also increases the program’s memorgf these dimensions.

12

7 Conclusion Allaire G (2009) Shape and topology
optimization by the level set method. URL

This paper presents a MATLAB code for topology http://www.cmap.polytechnique.fr/~allaire

optimization. The code is considered as the successor to tilBendsge M, Sigmund O (2003) Topology Optimization.

99 line code presented Imh@oon. It is published Theory, Methods and Applications. Springer

with the same objective: to provide students and newcomemBourdin B (2001) Filters in topology optimization. Inter-

to the field with a very simple implementation of a topology national Journal for Numerical Methods in Engineering

optimization algorithm that can serve as an introductory 50(9):2143-2158

example and as a basis for further developments. The co@®uns TE, Tortorelli DA (2001) Topology optimization of

can be download from the web sitew . topopt . dtu.dk. non-linear elastic structures and compliant mechanisms.

The major difference with respect to the original 99 Computer Methods in Applied Mechanics and Engineer-
line code is the computational efficiency. An improvement ing 190(26-27):3443-3459
in speed with a factor of 100 has been measured for aChallis VJ (2010) A discrete level-set topology optimipati
example problem with 7500 elements. This has mainly been code written in Matlab. STRUCTURAL AND MULTI-
accomplished by means of loop vectorization and memory DISCIPLINARY OPTIMIZATION 41(3):453-464
preallocation. Dabrowski M, Krotkiewski M, Schmid D (2008) MIL-

In addition, the code has been extended by a density AMIN: MATLAB-based finite element method solver for
filter. The inclusion of a density filter has an important ed- large problems. Geochemistry Geophysics Geosystems
ucational value, as it paves the road for the implementation 9(4)
of more sophisticated filters such as the Heaviside filter alsDavis T (2007) Creating sparse finite-element matrices in

discussed in the paper. MATLAB. Guest blog in Loren on the Art of MATLAB,
Special care has been taken not to compromise the http://blogs.mathworks.com/loren/2007/03/01/cregtin
simplicity of the code. As a result, the new code is sparse-finite-element-matrices-in-matlab/. URL

characterized by the same readability as the original ¥ lin http://blogs.mathworks.com/loren/
code, although the number of lines has been reduced to 8@avis T (2008) User Guide for CHOLMOD: a sparse
The paper also presents two alternative implementations. Cholesky factorization and modification package. De-
The first alternative takes advantage of thav2 function partment of Computer and Information Science and
built-in in MATLAB to filter densities and sensitivities, so Engineering, University of Florida, Gainesville, FL, USA
reducing the number of lines to 71 without affecting theDiaz A, Sigmund O (1995) Checkerboard patterns in layout
computational cost or the readability of the code (for those optimization. Structural Optimization 10(1):40-45
familiar with the conv2 function). The second alternative GuestJ, Prevost J, Belytschko T (2004) Achieving minimum
uses a filter based on a Helmholtz type differential equation |ength scale in topology optimization using nodal design
allowing for the use of a finite element solver to perform variables and projection functions. International Journa
the filtering operation. This is beneficial for problems with for Numerical Methods in Engineering 61(2):238—-254
a complex geometry or when the optimization problem isJog C, Haber R (1996) Stability of finite element models
solved in parallel. for distributed-parameter optimization and topology
design. Computer Methods in Applied Mechanics and
Acknowledgements This work was financially supported by Villum Engineering 130(3-4):203-226
Fonden (via the NATEC Centre of Excellence), the Euroh&88 Lazarov B, Sigmund O (2009) Sensitivity filters in topology

European Young Investigator Award (EURYI), by a Center of qnimisation as a solution to helmholtz type differential
Advanced User Support (CAUS) grant from the Danish Center of fi In: In P f the 8th World Conaress on
Scientific Computing (DCSC), and by an Elite Research Priza the equaton. In. In Froc. o e 0 9

Danish Minister of Research. The third author is a postdatfellow Structural and Multidisciplinary Optimization

of the Research Foundation - Flanders and a member of K.Mdreu |Lazarov B, Sigmund () (2010) Filters in topology Opti-

BOF PFV/10/002 OPTEC-Optimization in Engineering Center. mization based on Helmholtz type differential equations
(submitted for publication)

Sigmund O (1994) Design of material structures using

topology optimization. PhD thesis, DCAMM S-report

S69, Department of Solid Mechanics, Technical Univer-

sity of Denmark

Sigmund O (1997) On the design of compliant mechanisms

using topology optimization. Mechanics of Structures and

Machines 25(4):493-524

References

Alberty J, Carstensen C, Funken S (1999) Remarks around
50 lines of Matlab: short finite element implementation.
Numerical Algorithms 20(2-3):117-137

Alberty J, Carstensen C, Funken S, Klose R (2002) Matlab
implementation of the finite element method in elasticity.
Computing 69(3):239-263

file:www.topopt.dtu.dk
http://www.cmap.polytechnique.fr/~allaire
http://blogs.mathworks.com/loren/

13

Sigmund O (2001) A 99 line topology optimization
code written in Matlab. Structural and Multidisciplinary
Optimization 21(2):120-127

Sigmund O (2007) Morphology-based black and white
filters for topology optimization. Structural and Multidis
ciplinary Optimization 33(4-5):401-424

Sigmund O (2009) Manufacturing tolerant topology opti-
mization. Acta Mechanica Sinica 25(2):227-239

Sigmund O, Petersson J (1998) Numerical instabilities
in topology optimization: A survey on procedures
dealing with checkerboards, mesh-dependencies and
local minima. Structural Optimization 16(1):68—75

Suresh K (2010) A 199-line Matlab code for Pareto-
optimal tracing in topology optimization. Structural and
Multidisciplinary Optimization Published online

The MathWorks (2010) MATLAB Programming Funda-
mentals

Wang F, Lazarov B, Sigmund O (2010) On projection meth-
ods, convergence and robust formulations in topology
optimization (submitted for publication)

14

Appendix - MATLAB code

%%%% AN 88 LINE TOPOLOGY OPTIMIZATION CODE Nov, 2010 %%%%
function top88(nelx,nely,volfrac,penal,rmin,ft)
%% MATERIAL PROPERTIES
EO = 1;
Emin = 1e-9;
nu = 0.3;
%% PREPARE FINITE ELEMENT ANALYSIS
A11 = [12 3 -6 -3; 312 3 0; -6 3 12 -3; -3 0 -3 12];
A12 = [-6 -3 0 3; -3 -6-3-6; 0-3-6 3; 3 -6 3 -6];
Bil = [-4 3-2 9; 3 -4-9 4; -2 -9 -4 -3; 9 4 -3 -4];
Bi12=[2-3 4-9; -3 2 9-2; 4 9 2 3; -9 -2 3 2];
KE = 1/(1-nu~2)/24*([A11 A12;A12° A11l+nux[B11 B12;B12’ B11]);
nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx) ;
edofVec = reshape (2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
edofMat = repmat (edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);
iK = reshape (kron(edofMat,ones(8,1))’,64*nelx*nely,1);
jK = reshape (kron(edofMat ,ones(1,8))’,64*nelx*nely,1);
% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
F = sparse(2,1,-1,2*(nely+1)*(nelx+1),1);
U = zeros(2*(nely+1)*(nelx+1),1);
fixeddofs = union([1:2:2x(nely+1)], [2*%(nelx+1)*(nely+1)]);
alldofs = [1:2x(nely+1)*(nelx+1)];
freedofs = setdiff (alldofs,fixeddofs);
%% PREPARE FILTER
iH = ones(nelx*nely*(2*(ceil (rmin)-1)+1)"2,1);
jH = ones(size(iH));
sH = zeros(size(iH));
k = 0;
for il = 1:nelx
for j1 = l:nely
el = (i1-1)*nely+ji;
for i2 = max(il-(ceil(rmin)-1),1):min(il+(ceil (rmin)-1) ,nelx)
for j2 = max(jl-(ceil(rmin)-1),1):min(jl+(ceil (rmin)-1) ,nely)
e2 = (i2-1)*nely+j2;

© ® N @ O s W N e

W oW oW W W NNNNNNNNRNDNERR R B 2R R R e
2 ® NP O 0 ® N0 U ®NRP OO ® N O MNP O
[}

35 k = k+1;

36 iH(k) = el;

37 jHK) = e2;

38 sH(k) = max(0,rmin-sqrt((i1-i2)"2+(j1-j2)"2));
39 end

40 end

41 end

42 end

H = sparse(iH, jH,sH);
Hs = sum(H,2);
%% INITIALIZE ITERATION
x = repmat (volfrac,nely,nelx);
xPhys = x;
loop = 0;
change = 1;
%% START ITERATION
while change > 0.01
loop = loop + 1;
%% FE-ANALYSIS
sk = reshape (KE(:)*(Emin+xPhys(:)’. penal*(EO-Emin)) ,64*nelx*nely,1);
K = sparse(iK, jK,sK); K = (K+K’)/2;
U(freedofs) = K(freedofs,freedofs)\F(freedofs);
%% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
ce = reshape (sum((U(edofMat)*KE) . ¥*U(edofMat) ,2) ,nely,nelx) ;
¢ = sum(sum((Emin+xPhys. penal*(EO-Emin)) .*ce));
dc = -penal*(EO-Emin)*xPhys. "~ (penal-1) .*ce;
dv = ones(nely,nelx);
%% FILTERING/MODIFICATION OF SENSITIVITIES
if ft ==
dc(:) = H*x(x(:).*dc(:))./Hs./max(1e-3,x(:));
elseif ft ==
dc(:) = Hx(dc(:)./Hs);
dv(:) = H*(dv(:)./Hs);
end
%% OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND PHYSICAL DENSITIES

[R~ N S = W S« S S < R =B B, < NS B, B B, B SRS B, T N N N U S
© ® N ® a0 h ® NP O © ® N O A~A®NP OB ® AN O R

15

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95
96
97
98
929
100
101
102
103
104
105
106
107
108
109
110
111

113

11 = 0; 12 = 1e9; move = 0.2;
while (12-11)/(11+12) > 1e-3
1mid = 0.5%(12+11);
xnew = max(0,max(x-move,min(1,min(x+move,x.*sqrt(-dc./dv/1mid)))));

if ft ==

xPhys = xnew;
elseif ft ==

xPhys(:) = (H*xnew(:))./Hs;
end

if sum(xPhys(:)) > volfrac*nelx*nely, 11 = Imid; else 12 = 1lmid; end
end
change = max(abs(xnew(:)-x(:)));
X = xnew;
%% PRINT RESULTS
fprintf (° It.:%5i Obj.:%11.4f Vol.:%7.3f ch.:%7.3f\n’,loop,c,
mean (xPhys(:)),change);
%% PLOT DENSITIES
colormap (gray); imagesc(1-xPhys); caxis([0 1]); axis equal; axis off; drawnow;
end
%
Tt T ToToTo T To ToTo T T To o T To o o T To o o T s o T T o o T o o Fo T o o T o o o o T o o P o o o o T o o T s o o o oo o T o oo

% This Matlab code was written by E. Andreassen, A. Clausen, M. Schevenels,Y

% B. S. Lazarov and 0. Sigmund, Department of Solid Mechanics, yA
% Technical University of Denmark, %
% DK-2800 Lyngby, Denmark. %
% Please sent your comments to: sigmund@fam.dtu.dk %
) h
% The code is intended for educational purposes and theoretical details %
% are discussed in the paper %
% "Efficient topology optimization in MATLAB using 88 lines of code, %
% E. Andreassen, A. Clausen, M. Schevenels, %
% B. S. Lazarov and 0. Sigmund, Struct Multidisc Optim, 2010 %
% This version is based on earlier 99-line code yA
% by Ole Sigmund (2001), Structural and Multidisciplinary Optimization, %
% Vol 21, pp. 120--127. %
h *h
% The code as well as a postscript version of the paper can be %
% downloaded from the web-site: http://www.topopt.dtu.dk %
h h
% Disclaimer: %
% The authors reserves all rights but do not guaranty that the code is %
% free from errors. Furthermore, we shall not be liable in any event %
% caused by the use of the program. %

Y Y Oy Y Y O O Y Y Y Y Y Y Y Y Y Y Y Y Y A Y Y Y Y Y Y Y Y Y S Y Y Y Y Y Y Y Y Y Y

	Introduction
	Problem formulation
	MATLAB implementation
	Alternative implementations
	Extensions
	Performance
	Conclusion

