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Resumé (in Danish)

Lyd og lys udbreder sig i bølger og spredes, reflekteres og ændrer retning ved møde
med andre medier og forhindringer. Ved at optimere udformningen og fordelingen
af de medier bølgerne møder p̊a deres vej kan man opn̊a nyttige og interessante
effekter. Denne afhandling beskriver hvorledes topologioptimering kan anvendes til
at designe strukturer for manipulering af elektromagnetiske og akustiske bølger. De
betragtede bølge-problemer opdeles i tre klasser.

Den første klasse omhandler udformningen af en struktur, som n̊ar den er placeret
rundt om et objekt, vil gøre objektet usynligt for en iagttager. I undersøgelsen er ma-
terialet i strukturen begrænset til materialer med isotropiske materiale parametre,
der er let tilgængelige i naturen. Usynlighedseffekten for de optimerede dielektriske
strukturer viser sig at være næsten perfekt for et begrænset antal diskrete ind-
faldsvinkler i et begrænset frekvensomr̊ade. Materialestrukturen forsinker bølger i
regioner med højere permittivitet end baggrundsmaterialet s̊aledes at n̊ar de efterfølg-
ende forlader strukturen, er de i fase med bølgerne udenfor. Retningsbestemte
akustiske materialestrukturer, der kan skjule et objekt for en akustisk bølge, kan
ogs̊a konstrueres ved hjælp af topologioptimeringsmetoden. Designet udgøres af
aluminiumscylindre hvor deres placering og størrelse er optimeret s̊aledes at deres
samlede spredningsmønster annullerer spredningen fra en stor cylinder. Hvis kun
tilbagespredningen af et cylindrisk objekt i et begrænset vinkelinterval ønskes elim-
ineret opn̊as en overraskende simpel ringformet Bragg-lignende gitterstruktur med
lag, hvis dimensioner afhænger af objektets radius.

Den anden klasse omhandler optimering af overflader til effektiv ind- og ud-
kobling af elektromagnetiske overfladeplasmoner p̊a metalliske medier. Resultaterne
indikerer, at effektiviteter, der overstiger 68%, er mulige for gitre med skr̊a fordyb-
ninger.

Den tredje klasse omhandler design af plane Fresnel zoneplader med henblik p̊a
fokusering af elektromagnetiske bølger. De topologioptimerede zoneplader forbedrer
fokuseringen i forhold til de resultater, der er kendt fra litteraturen.
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Abstract

Sound and light propagate as waves and are scattered, reflected and change direction
when encountering other media and obstacles. By optimizing the spatial placement
and distribution of the media, which the waves encounter, one can obtain useful and
interesting effects. This thesis describes how topology optimization can be used to
design structures for manipulation of the electromagnetic and acoustic waves. The
wave problems considered here fall within three classes.

The first class concerns the design of cloaks, which when wrapped around an
object will render the object undetectable for an outside observer. In the study
the material layout of cloaks are restricted to isotropic materials readily available
in nature. For fully enclosed, all-dielectric cloaks the cloaking is shown to be nearly
perfect for a few discrete angles of incidences in a limited frequency range. The
working principle for the cloak is to delay the waves in regions of higher permittivity
than the background and subsequently phase match them to the waves outside.
Directional acoustic cloaks can also be designed using the topology optimization
method. Aluminum cylinders constitutes the design and their placement and size
is optimized such that their combined scattering pattern cancel the scattering from
a big cylinder. If only the backscattering in a limited angular range needs to be
eliminated the electromagnetic cloak design simplifies to surprisingly simple annular
Bragg-like grating structures with layer dimensions that depend on the obstacle
radius.

The second class concerns the optimization of grating couplers for efficient in-
and out-coupling of electromagnetic surface waves at a metal-dielectric interface.
Results indicate that efficiencies beyond 68% are possible for slanted grove-based
gratings.

The third class concerns the design of planar Fresnel zone plate lenses for focusing
electromagnetic waves. The topology optimized zone plates improve the focusing
performance compared to results known from the literature.
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Chapter 1
Introduction

1.1 Motivation and goal

With the rapid advancement in the areas of material science, nano-photonics, acous-
tics and scientific computing, many interesting new optical and acoustic devices have
emerged in the recent years. The majority of these devices work by manipulating
wave propagation inside the device in order to enhance certain desirable physical
properties. The wave manipulation characteristics are a result of the spatial place-
ment and distribution of materials in the device. Hence control of the material
distribution inside the device enables manipulation of wave propagation for various
purposes.

The aim of this thesis is to study wave manipulation of acoustic and electromag-
netic waves by topology optimization. Topology optimization is a gradient based
optimization method that work by means of varying the distribution of materials
within a bounded design domain. The wave manipulation problems studied here
falls within three different class of problems. The first problem concerns minimiza-
tion of the scattered field in all directions or a specified angular range leading to
cloak designs for electromagnetic or acoustic waves. Optimization of grating cou-
plers for efficient in and out-coupling of electromagnetic surface waves propagating
at a metal-dielectric interface is considered in the second class of problems. Finally
planar Fresnel zone plate lenses are optimized for energy focusing. The physics for
the problems treated in this thesis are all governed by the same second order scalar
differential equation. The boundary value problems are either solved by the finite
element method or by analytic means.

1.2 Structure of the thesis

This thesis is a summary of the work done during the Ph.D. study. It gives an
overview of the main results presented in the six publications [P1]-[P6].

Chapter 2 presents a general introduction to acoustic and electromagnetic waves.
It is shown how the two types of waves are governed by the same scalar second order
differential equation in the special case of in-plane electromagnetic wave propaga-
tion.

The topology optimization method is introduced in chapter 3. Two different
design parametrizations in the realm of topology optimization are employed in this
thesis. Furthermore, the topology optimization algorithm, objective functions and
corresponding sensitivity analysis are described.

1



2 Chapter 1 Introduction

Chapter 4 is dedicated to the design of electromagnetic and acoustic cloaks by
topology optimization. The aim of this study is to examine how efficiently objects
can be cloaked when using conventional simple isotropic dielectric media readily
available in nature. For electromagnetic cloaks the permittivity is varied using the
standard density approach in order to minimize the scattered field in the surround-
ings of the cloak. The initial study concerns the evolution of the optimized designs
along with the corresponding cloaking properties for increasing number of incident
angles, i.e. increased symmetry. In the second cloaking problem the effect of back-
ground material and polarization is studied. For the acoustic cloaks the position
and size of subwavelength aluminum cylinders are varied in order to minimize the
scattered pressure wave. To aid realization the final design is constrained to consist
of cylinders with radii that fall within 3 discrete values. The chapter is a summary
of publications [P1], [P2] and [P3].

In chapter 5 the full cloaking problem is relaxed by only requiring elimination
of backscattering in a limited angular range. As it turns out, this relaxation re-
sults in omnidirectional cloak design made of isotropic, low-contrast, all-dielectric
materials readily available in nature. Due to the simple omnidirectional ring design
the electromagnetic field can be computed analytically. A parametrization based
on topology optimized designs is used in the optimization approach based on the
analytic expression. Presented method and results are based on findings from [P4].

The wave manipulation problem studied in chapter 6 deals with the efficient
excitation of surface plasmon polaritions propagating along a dielectric-metal inter-
face. Standard density based topology optimization is employed to find topologies
for grating couplers, such that the in and out-coupling efficiency of the plasmonic
surface waves are maximized. The chapter is a summary of publication [P5].

The final design problem of this thesis is presented in chapter 7 and concerns
focusing of a propagating wave by half opaque Fresnel zone plate. The transition
boundary condition can model full transmission or opacity at a specified design
boundary depending on the surface impedance. This property can be exploited in
the standard density approach allowing the surface impedance in each boundary
element to be varied. Method and results are based on findings from [P6].

Finally the thesis is concluded in chapter 8 and ideas for future work are pre-
sented.



Chapter 2
Time-harmonic acoustic and electromagnetic

wave propagation

In this chapter acoustic and electromagnetic waves are introduced. It is shown how
the physics of time-harmonic acoustic waves and time-harmonic electromagnetic
waves are governed by second order differential equations. The governing differential
equations with appropriate boundary conditions form boundary value problems,
which for the majority of the problems covered by this thesis are solved by the finite
element method.

2.1 Acoustic and electromagnetic waves

Acoustic waves are a special form of elastic waves propagating in inviscid fluids with
zero shear modulus[1]. The inviscid fluid particles oscillate back and forth about
their equilibrium positions creating regions of high density (compression) and low
density (decompression). This motion effectively creates a traveling longitudinal
pressure wave with oscillations parallel to the direction of propagation. Just as for
mechanical waves, it is the disturbance that travels not the individual particles in
the medium. Because acoustic waves work by means of compressing matter it can
only propagate in a medium and not in vacuum.

In contrast to acoustic waves, electromagnetic waves are transverse in character.
The electric and magnetic fields oscillate perpendicular to each other and to the
propagation direction[2]. Electromagnetic waves also differ from acoustic waves in
the sense that they can propagate in vacuum as well as in a medium. Electromag-
netic waves are caused by the interaction of a time-varying electric field and a time
varying magnetic field.

In the following detailed description of wave propagation we will focus our atten-
tion on electromagnetic waves because manipulation of acoustic waves constitutes
only a minor part of this thesis. However we will in our derivations end up with
the well-known duality between acoustic and in-plane electromagnetic wave propa-
gation in two dimensions (e.g. [3]). That is, the two different wave phenomenons
are governed by the same scalar wave equation.

2.2 Electromagnetic vector wave equations

Electromagnetic wave propagation is governed by Maxwells equations[4]. The mag-
netic and electric field are coupled through Maxwell-Ampere’s and Faraday’s laws,
which in source-free regions with isotropic, linear and inhomogeneous material can

3



4 Chapter 2 Time-harmonic acoustic and electromagnetic wave propagation

be stated in the instantaneous differential form as

∇×H = σE+ ε
∂E

∂t
(2.1)

∇× E = −μ∂H
∂t

(2.2)

where H = H(r, t) and E = E(r, t) is the magnetic and electric field, respectively,
r = (x, y, z) is the (Cartesian) position vector and t is the time. The three con-
stitutive parameters, the permittivity ε = ε(r), the permeability μ = μ(r) and the
conductivity σ = σ(r) determines how an applied electromagnetic wave behaves in
a medium. Control of these material properties allows us to manipulate wave prop-
agation which we will return to in the next chapter.

The two coupled first order differential equations can by trivial manipulations be
decoupled at the expense of increasing the order of differential equations to second
order. For both the electric and magnetic field we thereby get a system of three
time dependent second order differential equations, which for the electric field are
given by

∇×
(
μ−1
r ∇× E

)
+
εr
c2
∂2E

∂t2
+ μ0σ

∂E

∂t
= 0 (2.3)

where c = 1/
√
μ0ε0 is the speed of light in vacuum, ε0 ≈ 8.8542·10−12 F/m is the free

space permittivity and μ0 = 4π · 10−7 H/m is the free space permeability. The two
remaining constants εr = ε/ε0 and μr = μ/μ0 are the relative material properties to
that of vacuum.

For time-harmonic problems the electric field can be written in the form E(r, t) =
Ê(r) cos(ωt + φ) where ω and φ is the frequency and phase of the wave, respec-
tively. Expressing the time-dependence using an exponential function enables us
to construct the complex phasor Ẽ(r), which contains both amplitude and phase
information of the field as well as being time-independent.

E(r, t) = Ê(r) cos(ωt+ φ) = Re
[
Ê(r)ejφejωt

]
= Re

[
Ẽ(r)ejωt

]
(2.4)

where Re[·] denotes the real part. Furthermore, the time derivative ∂/∂t corresponds
to a multiplication by jω in the above phasor notation. In the remainder of this
thesis we only use the phasor notation, not only for the electric field but also for the
magnetic as well as the acoustic field, hence we omit the ”tilde”. Using this phasor
notation for time-harmonic waves we convert the wave equation from time domain
to frequency domain and get three frequency dependent second order differential
equations

∇×
(
μ−1
r ∇× E

)
− k20εcE = 0 (2.5)

where k0 = ω/c is the free space wavenumber and the complex permittivity is given
as εc = εr−jσ/(ωε0). The imaginary part of the permittivity represents the losses[5].
It is important to remember that the solution to equation (2.5) is a phasor and not



2.3 Helmholtz’ equation 5

Wave-type u A B k0

E-polarized Ez μ−1
r εr ω

√
μ0ε0

H-polarized Hz ε−1
r μr ω

√
μ0ε0

Acoustic p ρ−1
r κ−1

r ω
√
ρ0κ

−1
0

Table 2.1 Parameter relations for general notation.

a physical field. The physical field at time t = 0 is easily obtained as the real part
of the complex phasor. Multiplying an obtained phasor solution with ejφ1 results in
the phasor field for the phase, φ1.

2.3 Helmholtz’ equation

Throughout the thesis we will assume wave propagation in structures with infinite
extension in one dimension. In-plane modes describe wave propagation in a plane
perpendicular to the infinite extension. Traditionally in a Cartesian coordinate
system in-plane modes are given in the (x, y)-plane with the z-axis being out-of-
plane. With the E = (0, 0, Ez)

T field being out-of-plane and H = (Hx, Hy, 0)T field
being in-plane the wave equation in (2.5) simplifies to the scalar Helmholtz’ equation
(here presented in a general form)

∇ · (A∇u
)
+ k20Bu = 0 (2.6)

where u = Ez, A = μ−1
r and B = εc for the Ez polarization. In case of the magnetic

field being out-of-plane we instead use u = Hz, A = ε−1
c and B = μr for the Hz

polarization. The big advantage is of course that the out-of plane scalar field only
needs to be computed in the (2D) plane thereby easing the computational efforts.
Having obtained the solution for the out-of-plane field the in-plane field can easily
be derived from Maxwell-Amperes or Faradays laws in equations (2.1) and (2.2),
respectively.

The scalar Helmholtz’ equation does not only govern the in-plane wave propa-
gation for an electromagnetic wave. It also covers acoustic wave propagation[6] as
well as certain types of elastic wave propagation[7], with appropriate choice of the
coefficients A and B, c.f. table 2.1. In case of acoustic wave propagation u describes
the pressure field, p, with A being the inverse of the mass density, ρr, and B being
the inverse of the bulk modulus, κr. Here we have related the acoustic material
properties to that of air at room temperature to cast the acoustic wave propagation
in the same form as the electromagnetic case. Thus k0 = ω/c is the wave number

in air with c = 1/
√
ρ0κ

−1
0 being the speed of sound in air, where ρ0 = 1.204 kg m−3

and κ0 = 1.42 · 105 Pa.
Appropriate boundary conditions along with the stated Helmholtz equation com-

plete the boundary value problem which governs the physics for the problems con-
sidered in this thesis. In order to solve the boundary value problem numerically



6 Chapter 2 Time-harmonic acoustic and electromagnetic wave propagation

we need to truncate the otherwise infinite wave problems into a finite domain[8].
However, reflections from the boundaries are very likely without proper choice of
the truncation boundary conditions. First order absorbing boundaries are used for
the cloaking studies, whereas perfectly matched layers (PMLs) backed up with first
order absorbing boundaries are employed for problems regarding surface plasmons
and Fresnel zone plate lenses. The first order absorbing boundary conditions only
exhibit good performances under tailored circumstances (specific frequency and an-
gle of incidence) thus limiting their use. In contrast, PML works for arbitrary angles
of incidence and frequencies provided the PMLs are sufficiently large. The idea of
the PMLs is to surround the computational domain with a region of reflectionless
artificial absorbing material. When a wave enters the absorbing region, it is at-
tenuated and decays exponentially. The fictive loss of energy is governed by the
imaginary part of the material parameters in the PMLs (just like a lossy medium).
If the loss function is chosen wisely[9], all the energy of the entering waves will be
absorbed without reflections.

2.3.1 Energy and power flow of a wave

Energy and power flow of a wave are important factors for different performance mea-
sures in the optimization process. Both terms are described in Poynting’s theorem[2]
which in the instantaneous volume form and in the absence of sources can be written
as

−
∮
∂Ω

n · S dr =

∫
Ω

σ|E|2 dr+
∂

∂t

∫
Ω

ε|E|2 dr+
∂

∂t

∫
Ω

μ|H|2 dr (2.7)

where S = (E×H) is the Poynting vector representing the directional energy flux.
The equation states the conservation of energy for electromagnetic fields in a volume
Ω where the power flowing into the domain equals the sum of the power dissipation
and the rate of change in stored electric and magnetic energy. The theorem simplifies
for time-harmonic waves governed by the scalar Helmholtz equation. In the coming
chapters we will make extensive use of both the time-averaged energy and time-
averaged power flow. The time-averaged energy U in a domain Ω are in general
notation given as

U =
1

4

∫
Ω

B|u|2 dr (2.8)

whereas the time-averaged power flow P though a boundary Γ in the direction
n = {nx, ny}T is

P =

∫
Γ

n · 1

2ω
Re

[
jAū∇u

]
dr (2.9)

where (̄·) denotes the complex conjugate and A, B and u are given in table 2.1.
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2.4 Solution of Helmholtz’ equation

Helmholtz’ equation with appropriate boundary conditions form a boundary value
problem, for which it is not possible in most cases to find an analytic expression
for the state field. However, in this thesis we will encounter one problem (further
details in chapter 5) where the geometry of homogeneous material is so simple that
it allows us to compute the field analytically. For more complex geometries the
boundary value problem must be relaxed in order to find an approximate solution
with a numerical technique. In this work we use the finite element method[8]. There
exist other numerical schemes that are used for electromagnetic problems such as
the finite difference method[10] or discontinuous Galerkin methods[11], but these
are normally used in the time domain.

In the finite element method the outlined boundary value problem for the phys-
ical system is relaxed into an equivalent integral form called the weak formulation.
Next we subdivide the domain of the problem into elements and choose an inter-
polation function that gives an approximation of the unknown state field within an
element. On the element level the nodal values are interpolated as

u(r) ≈
M∑
e

ue(r) =

M∑
e

Ne(r)ue (2.10)

where M is the number of elements, Ne is the element shape functions and ue is
the unknown nodal solutions within the element. Following the standard Galerkin
method we assemble the element equations from all elements into a linear system of
equations to be solved in order to determine the approximate solution

Su = f (2.11)

where S is the system matrix, u is a vector of the discretized nodal values of the
state field u and f is the load vector. The system matrix, S, is dependent on the
element wise constant material properties A and B, c.f. table 2.1.

2.4.1 Scattered field formulation

One should keep in mind that an error in the phase of the simulated propagating
incident wave will occur[12], when solving the scalar Helmholtz equation as stated
in equation 2.6 using the finite element method. The basis functions cannot repre-
sent the true solution exactly. This error is named dispersion error and it can grow
substantially over a number of wavelengths. Using higher order elements, changing
the formulation and/or using boundary integral equations for tighter mesh trun-
cation can remedy the problem of solution accuracy. In this work we change the
presented total field formulation to the scattered field formulation. That is, the
unknown (total) field, u, can be written as the sum of the known incident field,
ui, and the unknown generated scattered field, us. This gives us the freedom to
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insert u = ui + us in the Helmholtz’ equation as well as the boundary conditions
and change the dependent variable from the total field to the scattered field. Thus
equation (2.6) is reformulated into the inhomogeneous Helmholtz’ equation

∇ · (A∇us
)
+ k20Bu

s = −∇ · (A∇ui
)− k20Bu

i (2.12)

The major difference between the two formulations is how the incident wave (the
load) enters the boundary value problem. In the total field formulation the incident
wave is excited on truncation boundaries whereas in the scattered field formulation
the incident wave is excited in regions where a scattering material is present and
on conducting boundaries. The dispersion errors are thereby eliminated because
the incident field does not have to propagate numerically across the computational
domain between the truncation surface and the scattering object.

2.4.2 Implementation

The implementation of the wave propagating problems is based on the high-level
programming language COMSOL Multiphysics with Matlab[13, 14]. COMSOL Mul-
tiphysics is an engineering, design, and finite element analysis software package for
the modeling and simulation of various physics-based problems described by partial
differential equations. The program allow the user to state the boundary value prob-
lem in weak as well as strong form or utilize the predefined templates (application
modes) for specific physical problems with appropriate boundary conditions. For
the problems regarding cloaking or surface plasmon polaritons we state the bound-
ary value problems in strong form, whereas we use the RF application module for
in-plane waves when designing Fresnel zone plate lenses. The state field is given
by second order Lagrange elements with at least 6 elements per wavelength. Accu-
racy of the various finite element implementations have been verified with analytic
solutions when possible and by Poynting’s theorem in equation (2.7) regarding the
conservation of energy.



Chapter 3
Topology optimization of wave problems

As briefly mentioned in the previous chapter the spatial placement and distribution
of the material properties determines how a wave behaves in a medium. Control
of these material properties allows us to manipulate wave propagation for various
purposes. The material as well as material layout needed in wave devices like Bragg
gratings[15], invisibility cloaks[16] and Fresnel zone plate lenses[17] can be derived
directly by analytic means. Such applications were developed by ingenious physicists
with great physical insight. However, in some cases the derived material properties
are very challenging to realize especially in the optical regime (e.g. invisibility
cloaks[16]), and in other cases the geometrical layout rule is known not to be optimal
(e.g. Fresnel zone plate lenses[18]). Optimization methods may be used as an
efficient design tool for such problems. Topology optimization is a gradient based
optimization method that work by varying the distribution of materials within a
bounded design domain. The strength of this method is that it can change the
shape topology without any geometrical constraints on the design. Originally the
method was developed by Kikuchi and Bendsøe using a homogenization technique
to minimize the compliance of continuum structures[19]. Since then the method
has been extended to other fields of engineering such as heat transfer (e.g. [20]),
fluid dynamics (e.g. [21]), micro electro-mechanical systems (e.g. [22, 23]), photonics
(e.g. [24, 25]) and acoustics (e.g. [6]). Today implementations[26, 27] of the topology
optimization method for structural problems are available free of charge intended
for educational purposes and even commercial software packages such as OptiStruct
by Altair and TOSCA by FE-Design exist. The purpose of this chapter is to give
a brief introduction to topology optimization and how it is applied to the acoustic
and electromagnetic wave manipulation problems covered in this thesis. A thorough
description of the topology optimization method can be found in the monograph by
Bendsøe and Sigmund[28].

3.1 Topology optimization of acoustic and electromagnetic
wave propagation problems

The behavior of electromagnetic waves is determined by the distribution of dielec-
tric material, magnetic material, air and/or metal. The first material distribu-
tion technique concerning electromagnetic waves was reported more than a decade
ago[29, 30]. In the study, dielectric material was distributed in order to maximize
the band gap in 2D photonic crystals. Not long after the initial study, the transmis-
sion through photonic crystal wave guide bends[24] and splitters[31] was maximized

9
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for single frequency as well as broad banded behavior. Realizations of the optimized
dielectric layouts for the photonic crystal wave guide verified the results obtained
by topology optimization[25, 32]. Topology optimization has also been applied to
antenna design, e.g. patch antennas[33, 34], dielectric resonator antennas[35] and
sub-wavelength antennas[36]. However, at microwave the skin-depth is many or-
ders of magnitude smaller than the wavelength which poses a problem of capturing
the physics correctly in the framework of the topology optimization method. An
efficient skin-depth resolving methodology for distributing conducting material has
been developed in [37] to remedy this problem. Material layouts for optimized ef-
ficiency of various coupling devices, e.g. [38, 39, 40], for electromagnetic waves has
also been reported in the literature. For the majority of the above studies topology
optimization has been applied to problems in the frequency domain. However, it
is more appropriate to define the problem in the time-domain when designing filter
and pulse modulation devices[41, 42, 43, 44]. A comprehensive review of topology
optimization applied to nano-optical design can be found in [45].

Topology optimization was applied to acoustic problems for the first time in
2003 where a Horn-like antenna device was optimized[46] and a similar study was
later reported in [47]. Topology optimization of vibro-acoustic problems in which
the elastic and acoustic governing equations are coupled has also been studied[48].
Furthermore, a thorough study of noise reduction by topology optimized sound bar-
riers was presented in [6]. The latter study also covers 3D acoustic design.

Topology optimization has shown to be an effective tool in determining the ma-
terial layout for manipulation of acoustic or electromagnetic waves. In this work
topology optimization is applied to design wave manipulation devices for field mini-
mization, wave coupling and energy focusing. The first problem concerns minimiza-
tion of the scattered field in all directions or a specified angular range leading to
cloak designs for electromagnetic or acoustic waves. Efficient in and out-coupling
of electromagnetic surface waves propagating at a metal-dielectric interface is con-
sidered in the second class of problems. Finally, planar Fresnel zone plate lenses
are optimized for energy focusing. The different physics for the problems treated in
this thesis are all be governed by an equivalent state equation, as already described
in the preceding chapter. However, the design parametrization for the different
optimization problems vary which will be discussed in further details below.

3.2 Design parametrization

The concept of topology optimization for a wave manipulation problem is sketched
in figure 3.1. The material layout in the design domain Ωdes is varied continuously
in order to optimized a given objective in Ωout. Common objectives for wave ma-
nipulation problems are field or power flow minimization/maximization. The design
parametrization provide the foundation of how the material layout is varied in the de-
sign domain. In this thesis we have employed two different design parametrizations;
the standard density approach[49] and the material mask overlay strategy[50, 51].
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Ωout

Ωdes

Truncation boundary

Incident
field

Figure 3.1 The concept of topology optimization for a wave manipulation problem. The
material layout in the design domain Ωdes is varied continuously in order to optimized a
given objective in Ωout.

The former method is used for the majority of the problems, whereas the latter
is only employed for cloaking problems, where cylindrical features constitute the
design.

3.2.1 Density method

In the density approach a continuous design variable 0 ≤ γe ≤ 1 is introduced
for each element in the design domain and controls the material properties in its
element. The design variables are relative element material densities, where γe = 0
corresponds to material 1 and γe = 1 corresponds to material 2. The following linear
interpolation models the relation between element densities and element material

A(γe) = A1 + γe(A2 − A1) (3.1)

B(γe) = B1 + γe(B2 − B1) (3.2)

where (A1, B1) and (A2, B2) are the (complex) material properties for material 1
and 2, respectively. The interpolation function allows intermediate values of the
material properties in the final design. For some problems this is both physically
sound and realizable, but for other problems intermediate densities are difficult to
interpret in practical realizations and should be avoided. One path to obtaining
discrete designs is to make intermediate densities ”expensive” for the optimizer
using penalization schemes. A popular choice for mechanical problems is the SIMP-
method[49] and for certain electromagnetic problems the ”pamping” method[31].
The latter method works by introducing artificial damping and thereby artificial
energy loss for intermediate densities by adding an imaginary part to the permittivity
j4(γ2

e − γe) in the interpolation scheme. The ”pamping”-method usually works well
when maximizing transmission (e.g. excitation of surface plasmons) but fails to
work for field-minimization problems (e.g. cloaking). Heaviside projection based
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filtering techniques is another approach for achieving discrete designs and this will
be explained in further details below.

3.2.2 Material mask overlay strategy

The Material Mask Overlay Strategy (MMOS) employs a continuous approximation
of the Heaviside function to interpret a fixed set of cylinders as element densities in an
underlying finite element mesh. The solution to the physical problem and gradients
are found based on the element densities as in the standard topology optimization
approach. However, the cylinders are parametrized by their positions and radii and
these parameters are used as design variables in the optimization process.

Positions and radii of M cylinders are initialized as the first step in MMOS.
Based on the cylinder layout the element density γe for element e can be derived as

γe =
M∏
i=1

1

1 + exp[−β(dei − ri)]
(3.3)

where dei is the distance from element e to the center of cylinder i and ri is the radius
of cylinder i. A high β-value is chosen for a close approximation of the Heaviside
function. If the centroid of element e lies within the space occupied by one of the
M cylinders, γe will go towards zero, due to the denominator in equation 3.3 going
to infinity, otherwise γe will be one.

It should be remarked that there exists an alternative method[52] for achieving
cylinder features in the final design using a β-continuation scheme. The method
relies heavily on penalizing intermediate densities in order to achieve the fixed fea-
ture shape. However, it is not clear how intermediate densities can be penalized
effectively in cloaking problems and for this reason the method is not used here.

3.3 Formulating the optimization problem

A generic formulation of the topology optimization problem for either of the two
design parametrizations takes the form

min
x

Φ(u(x),x) objective function (3.4)

subjected to gi(u(x),x) ≤ 0, i = 1, . . . , m constraint functions (3.5)

S(x)u− f(x) = 0 state problem (3.6)

xmin
j ≤ xj ≤ xmax

j , j = 1, , . . . , n design variable bounds (3.7)

where x is a vector of design variables. For the standard density method x defines
the element densities which can be varied continuously between 0 and 1, whereas
for MMOS x represents positions and radii for all cylinders.
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The objective function Φ measures the performance of the design given by the
design variables. As briefly mentioned in the previous chapter we have overall used
two performance measures in this work, energy or power flow of a wave. The former
objective function does not distinguish between standing or traveling waves whereas
the latter objective only measures traveling waves in a specified direction. The en-
ergy of a wave can be evaluated as given in equation (2.8). However, in all problems
treated here the material property B is constant in the domain where the objective
function is evaluated. Thus in effect the material property B together with 1/4 only
act as a scaling factor for the objective and for this reason are omitted. Instead of
the energy we minimize/maximize the field norm |u|2. The power flow of a wave
can be calculated as stated in equation (2.9), however, we evaluate the power flow
in a domain instead of at a boundary. It should be noted that in the MMOS design
parametrization there is no inherited protection against two cylinders merging to-
gether. We are only interested in designs with isolated cylinders therefor we add an
additional distance measure between all cylinders to the objective function. The dis-
tance measure is included in the objective function to penalize overlapping cylinders
explicitly. If the boundaries of two cylinders are close to overlapping the penaliza-
tion term will increase exponentially and otherwise go towards zero. Cylinders in
close proximity thereby repel each other leading to isolated shapes. Furthermore
a volume constraint is introduced for all topology optimization problems to avoid
excess usage of material and in some cases such a constraint has been observed to
speed up convergence.

For some optimization problems it is desirable to optimize the material distribu-
tion for two or more responses (e.g. frequencies) simultaneously. This is effectively
performed by a min/max-formulation, i.e. the response that gives the highest ob-
jective is minimized, stated in generic form

min
X

max
k=1,...,N

{Φk(uk(x),x)} (3.8)

where k refers to the index of the N responses. However the min/max-formulation
leads to a non-smooth optimization problem that cannot be solved using a gradient-
based optimizer. In stead an extra design variable ξ and an extra constraint for each
response are introduced in the equivalent smooth formulation

min
x,ξ

ξ (3.9)

subjected to Φk(uk(x),x))− ξ ≤ 0, k = 1, . . . , N (3.10)

The non-linear and non-convex optimization problem either in a standard or min/max-
formulation is solved efficiently by the gradient-based optimization routine Method
of Moving Asymptotes (MMA) [53] in an iterative approach. The overall optimiza-
tion algorithm is described in a simplified pseudo code at the end of this chapter.



14 Chapter 3 Topology optimization of wave problems

3.4 Filtering

Filtering techniques are adopted in the density approach to mitigate mesh-dependency
and to introduce a minimum length scale in order to avoid small details. Here
we briefly describe the standard density filter[54, 55] and the deterministic robust
formulation[56], both of which have been used in this thesis. A thorough overview of
various filters employed in topology optimization is provided in [57]. Recent types
of filters include the PDE filter[58, 59] introduced for parallel implementations of
topology optimization and stochastic robust formulations[60, 43].

The standard density filter modifies the element density to be a function of the
densities in a specified neighborhood of an element. The neighborhood Ne of each
element e is defined as the elements that lie within the filter radius R

Ne = {j | ‖re − rj‖ < R} (3.11)

The filtered variable γ̃e for element e is then calculated as

γ̃e =

∑
j∈Ne

w(rj)Vjγj∑
j∈Ne

w(rj)Vj
(3.12)

where w(rj) = R − ‖re − rj‖ is the linearly decaying weight function and Vj is the
volume of element j. The standard density filter does not prevent grayscale (i.e.
intermediate densities). Even with penalization schemes grayscale are introduced in
a transition region between the different materials. The standard density filter acts
as a base upon which other filters are build (e.g. projection filters).

Several filters based on Heaviside projections[61] have been proposed in the
literature in order to achieve discrete designs and minimum length scales on one
or all materials. In the study of surface plasmon we use a multiphase projection
filter[62], which ensure minimum length scales on both material 1 and 2 simultane-
ously. Whereas for the cloaking problems and Fresnel zone plate lenses we use the
deterministic robust formulation[56], which makes the design robust for equally dis-
tributed manufacturing errors as well as giving discrete designs for problems where
penalization fails to work. The backbone of the deterministic robust formulation
is threshold projection[63], which project the filtered densities below the threshold
η ∈ [0, 1] towards 0, and above the threshold towards 1. Three equivalent state
problems[56], but with different projections (i.e. dilated, intermediate and eroded)
are formulated and optimized as a min/max problem. The threshold projection
from [63] is given as

¯̃γe =

⎧⎪⎨
⎪⎩

η
[
e−β(1−γ̃e/η) − (1− γ̃e/η)e

−β
]

0 ≤ γ̃e ≤ η

(1− η)
[
1− e−β(1−γ̃e/η)/(1−η)

+(γ̃e − η)/(1− η)e−β
]
+ η η < γ̃e ≤ 1

(3.13)

where β is the projection parameter, which controls how well the Heaviside function
is approximated. For β → ∞ equation (3.13) approaches the Heaviside function
with threshold η.



3.5 Sensitivity analysis 15

3.5 Sensitivity analysis

The design is updated based on the sensitivities of the objective and constraints
with respect to the physical element densities. The sensitivities indicate how much
the objective and constraints will change for an infinitesimal variation in a certain
design variable. Here the adjoint method[31] is employed to find the sensitivities for
a discretized problem on the form of equation (2.11). Following the adjoint analysis
we add the scalar product of the residual R = Su−f = 0 and a vector of Lagrangian
multipliers to the objective function. Due to the complex problem both the residual
and its complex transpose are added to form the augmented Lagrangian

L = Φ + λT
1 (Su− f) + λT

2 (S̄ū− f̄) (3.14)

where (·)T refers to the real transpose and λ1 and λ2 are Lagrangian multipliers.
Next the derivative of the Lagrangian with respect to γe needs to be derived. The
input to the objective function Φ(uR(γ),uI(γ), γ) is formulated in terms of real
and imaginary parts of the complex field vector u = uR − juI . Furthermore, the
complex field vector is an implicit function of the design variables, thus the chain-
rule is needed in the evaluation of dL/dγe. The further derivations is omitted here,
however the idea is to eliminate the unknown derivatives ∂uR/∂γ

e and ∂uI/∂γ
e at

the cost of solving an adjoint problem. By clever manipulations it can be shown
that λ1 = λ̄2 = λ and finally the sensitivities are derived to

dL
dγe

=
dΦ

dγe
=

∂Φ

∂γe
+ 2Re

[
λT

(
∂S

∂γe
u− ∂f

∂γe

)]
(3.15)

where λ is obtained from the solution of the adjoint problem

STλ = −1

2

(
∂Φ

∂uR
− j

∂Φ

∂uI

)T

(3.16)

The term ∂Φ/∂γe in equation (3.15) is for the specific problems treated in this thesis
zero due to the design domain not being a part of the output domain in any of the
problems. The terms ∂S/∂γe and ∂f/∂γe are known as part of the direct solution
of equation (2.11). For the present finite element problem the system matrix, S, is
symmetric and hence the solution of the adjoint problem in equation (3.16) can be
performed very efficiently by reuse of the factorization of S computed for the direct
analysis stated in equation (2.11). To summarize, this means that the computational
costs associated with obtaining the sensitivities is ignorable compared to the solution
of the original problem in equation (2.11). In order to compute the sensitivities for
the objective function Φ only the right-hand side of equation (3.16) needs to be
derived. Omitting B and 1/4 in equation (2.8), the right-hand side of equation
(3.16) with the field norm being the objective can be derived to

1

2

(
∂Φ

∂uR
− j

∂Φ

∂uI

)
=

∫
Ωout

ū dr (3.17)
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In case the objective function is stated as the power flow given by equation (2.9)
the right-hand side of equation (3.16) is found by the chain rule to

1

2

(
∂Φ

∂uR

− j
∂Φ

∂uI

)
=

∫
Ωout

(
∂p

∂u
+

∂p

∂∇u
· ∇

)
dr (3.18)

where p = 1/(2ω)Re[jAū∇u] · n and hence

∂p

∂u
= − 1

4ω
jĀ∇ū · n (3.19)

∂p

∂∇u
=

1

4ω
jAūn (3.20)

3.5.1 Sensitivity-corrections for filters

The gradients obtained by the adjoint sensitivity analysis given in equation (3.15)
are based on the physical element densities. With a filter applied to the problem
we find the gradients of the objective function with respect to the design variables
from the chain rule. Thus for the standard density filter we get

∂Φ

∂γe
=

∑
i=Ne

∂Φ

∂γ̃i

∂γ̃i
∂γe

(3.21)

and for filter types based on Heaviside projection the sensitivities are found by

∂Φ

∂γe
=

∑
i=Ne

∂Φ

∂ ¯̃γi

∂ ¯̃γi
∂γ̃i

∂γ̃i
∂γe

(3.22)

3.5.2 Sensitivities for the MMOS parametrization

The gradients for the objective with respect to position and radius are derived using
the chain rule

∂Φ

∂ζi
=

N∑
e=1

(
∂Φ

∂γe

∂γe
∂ζi

)
(3.23)

where ζi represent one of the three design variables (xi, yi, ri) for cylinder i and N
is the number of elements in the design domain. The sensitivities ∂Φ/∂γe can be
obtained from equation (3.15) and the sensitivities ∂γe/∂ζi for the element density
of element e with respect to a change in the position (xi, yi) or radius ri for cylinder
i are derived from equation (3.3)

∂γe
∂xi

= γe

(
β exp(−β(dei − ri))

1 + exp[−β(dei − ri)]

)(
xi − xe
dei + ε

)
(3.24)

∂γe
∂yi

= γe

(
β exp(−β(dei − ri))

1 + exp[−β(dei − ri)]

)(
yi − yi
dei + ε

)
(3.25)

∂γe
∂ri

= −γe
(

β exp(−β(dei − ri))

1 + exp[−β(dei − ri)]

)
(3.26)
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where ε is a small number added to avoid a singularity in the denominator if the
positions of element e and cylinder j are coincident.

3.6 Optimization algorithm

The overall optimization algorithm is described in a simplified pseudo code below
where the numbers in parentheses correspond to equation numbers above.

1. Build neighborhood (3.11) if filtering

2. Initialize the design variable vector x1, k = 0 and change = 1

3. while change ≥ 0.01 and k ≤ 1000

(a) Compute physical design field from filtering (3.12), (3.13) or
MMOS (3.3) based on the design variables xk

(b) Solve FEM problem(s) (2.11) based on the physical design field

(c) Calculated objective function (2.8), (2.9) and constraints based on
the physical design field

(d) Solve adjoint problem (3.16) and compute sensitivities (3.15) based
on the physical design field

(e) Correct sensitivities for the design variables x for filter-
ing (3.21), (3.22) or MMOS (3.23)

(f) Update design variables xk+1 using MMA

(g) Calculate change = ‖xk+1 − xk‖∞
4. end

5. Postprocess

If a projection filter is employed in the optimization process the projection pa-
rameter β is updated in a continuation scheme where the value of β is gradually
increased from 1 to 512. A too close approximation of the Heaviside function ini-
tially may cause big oscillation in the convergence of the objective. Thus with a
projection filter the pseudo code should be extended with

(h) if mod(k,50) = 1 or change ≥ 0.01 and β ≤ βmax

i. β = 2β

ii. change = 0.2
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Chapter 4
Topology optimized electromagnetic and acoustic

cloaks

Rendering objects invisible to the human eye is a popular topic in science-fiction nov-
els and movies, but it has been considered impossible by most people to achieve in
the physical world. However, in 2006 two independent papers laid out the path of de-
signing real-world cloaking devices for ray optics[64] and electromagnetic waves[65].
Roughly speaking an invisibility cloak is a device, which when wrapped around
or placed nearby an object, renders the object and cloak invisible to an outside
observer. An incident electromagnetic or acoustic wave is manipulated by the ma-
terial of the cloak, such that the incident wave effectively is undisturbed outside
the cloak and object. This way no scattering from the object (or cloak) are to be
detected by the outside observer. Design of electromagnetic and acoustic cloaks by
topology optimization constitute the first wave manipulation problem in this thesis.
The chapter is a summary of publications [P1], [P2] and [P3].

4.1 Transformations Optics

The material layout of the aforementioned initial cloaks are determined by transfor-
mation optics[64, 65]. Transformation optics exploits that Maxwells’ equations and
thereby also the Helmholtz’ equation are invariant under any coordinate transfor-
mation, as long as the material parameters (μ and ε) are changed appropriately by
the transformation[66]. General coordinate transformations can be derived which
compress, expand, bend or twist space. Such transformation can be utilized in wide
range of electromagnetic problems. One approach to cloaking is to expand an in-
finitely small hole into the shape of the object, which should be made invisible.
As the system is transformed it carries with it all the associated fields and elec-
tromagnetic waves are thereby excluded in a region of same size as the object. To
give a flavor of how the transformation optic method works we demonstrate by an
example adopted from [67]. In a cylindrical coordinate system (ρ,θ,z) we expand
an infinitely small hole into a cylinder with the radius R1 by compressing the ring-
shape space between R1 and an outer cylinder with radius R2, and get the following
transformation

ρ′ = (R2 − R1)ρ/R2 +R1, θ′ = θ, z′ = z (4.1)

where ′ denotes the transformed coordinates. With an appropriate change of the
material properties Maxwell’s equations are invariant to the coordinate transform.
The appropriate change leads the transformed material parameters ε′ and μ′ to
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R2

R1

Figure 4.1 As a system is transformed it carries with it all the associated fields. A ray of
light in an undistorted coordinate system (a) forms a straight line[16]. The space between
R1 and R2 are compressed to exclude the cloaked region (b) by a the transformation given
in equation (4.1). The ray is ”glued” to the coordinates and is undistorted outside the
compressed region. Wave propagation in a medium without (c) and with (d) transformed
anisotropic material properties mimicking the coordinate transformation.

be anisotropic even though the original properties are isotropic. The transformed
permittivity tensor is derived by ε′ = ΛεΛ/ det(Λ) and equivalently for the per-
meability tensor by μ′ = ΛμΛ/ det(Λ) where Λ is the Jacobian matrix given
by Λi,j = ∂r′i/∂rj . If free space constitute the material properties in the non-
transformed space then the material properties undergoing a transformation given
by equation (4.1) are inside the cloak region changed to

ε′ρ′ = μ′

ρ′ =
ρ−R1

ρ
(4.2)

ε′θ′ = μ′

θ′ =
ρ

ρ− R1
(4.3)

ε′z′ = μ′

z′ =

(
R2

R2 −R1

)
ρ−R1

ρ
(4.4)

A uniform plane wave propagating in a medium with the above transformed anisotropic
material properties will be manipulated to flow around the cylinder without scat-
tering, c.f. figure 4.1. However, at the inner boundary of the cloak (ρ = R1) some
parameter components become singular (ε′ρ′ = μ′

ρ′ = ε′z′ = μ′

z′ = 0) while others
(ε′θ′ and μ′

θ′) goes to infinity. Another inherited problem of cloaking is that the part
of the wave inside the cloak has to travel a greater distance than the part of the
wave outside the cloak. This implies that the phase velocity inside the cloak needs
to be greater than the velocity of light in vacuum. The group velocity cannot at
the same time be faster than light, which means that the material parameters must
be dispersive. In effect the cloak can only be operated in a narrow-band frequency
range.

Furthermore, the presented object will not only be hidden from the outside world
with the above approach, the outside world will likewise be hidden from the object.
Complementary media remedies this by using media with negative refractive index
to design cloaks that are not encircling the object[68, 69]. An even more exotic appli-
cation of complementary media is illusion optics[70]. In illusion optics an object (e.g.
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a spoon) is manipulated to generate a scattering pattern of a completely different
object (e.g. a cup) and thereby give the illusion of being that object. Unfortunately
no materials in nature posses extreme properties (zero or negative), which makes
realizations challenging. A possible remedy to achieve extreme material properties
is to use metamaterials.

4.1.1 Metamaterials

The concept of metamaterials is to tailor micro structures with a periodicity much
smaller than the wavelength of the incoming wave. The incoming wave does not
”see” the inhomogeneity of the individual micro structure due to the structure be-
ing sub-wavelength. In stead the wave react as if the material is homogenous with
effective material parameters given by the micro structure. This way it is possible to
mix natural occurring materials in a clever way to obtain certain properties which
were otherwise not possible. The idea of metamaterials originates from Veselago
who theoretically studied the effect of both permittivity and permeability being
negative simultaneously[71]. Many years later Pendry proposed the designs of ar-
tificial structured materials which would have effectively negative permittivity and
permeability[72, 73] and not long after the first metamaterial with negative index
of refraction was demonstrated[74]. Shortly after the initial papers on transforma-
tion optics a cloak with approximated extreme anisotropic material properties was
realized in the micro-wave regime using a structured metamaterial[75]. However, re-
alizations at optical frequencies of the extreme properties even with metamaterials
still remain challenging due to bandwidth-limitations, material absorption and not
to mention fabrication difficulties of sub-wavelength artificial structures.

At a first glance the problem of systematic designing metamaterials using topol-
ogy optimization to mitigate some of the challenges seems equivalent to design-
ing materials with negative Poisson’s ratio[76] and negative thermal expansion[20].
However, obtaining the effective parameters in a systematic and automated way,
which is needed for the topology optimization method to be effective, has proven to
be very challenging. The problem arises from branch ambiguities and that the para-
meters vary in a non-trivial way with the angle of incidence[77]. Several methods for
extracting the effective parameters have been reported in the literature[78, 79, 80, 81]
and based on such extraction methods metamaterials with negative permeability
have been designed using topology optimization[82]. However, based on the study
in [82] we do not find it worthwhile at the moment to proceed with double nega-
tive materials. In stead, we take a different path by designing the entire cloaking
structure and thereby bypassing homogenization issues.

4.1.2 All-dielectric cloaking

Several alternative approaches to cloaking have emerged due to all the challenging
problems that arises from extreme material parameters. The most prominent is the
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”carpet cloak” approach developed by Li and Pendry in 2008[83]. The idea is to
conceal a bump on a reflective surface. The reflective surface will effectively appear
smooth when the ”carpet cloak” is placed on top of the dump. The material prop-
erties needed for the ”carpet cloak” can again be obtained by the transformation
optics method and as it turns out the material properties for this class of cloaks are
not extreme and can be realized with dielectric materials. Furthermore, the wave
does not need to travel faster inside the cloak than outside and thereby circum-
venting the dispersion issue. These finding sparked a lot of interesting realizations
in which both 2D and recently 3D macroscopic all-dielectric carpet cloaks in the
optical regime have been demonstrated, c.f. [84, 85, 86, 87]. Other exciting studies
on the use of natural occurring material in cloaking include hiding a particle[88]. In
that study topology optimization is used to minimize the extinction efficiency of a
particle by distributing ethanol and air.

In this thesis we return to the challenging problem of designing fully enclosing,
all-dielectric cloaks and systematically address the intriguing question: ”How effi-
ciently can we cloak when using conventional simple isotropic dielectric media readily
available in nature?”. Permittivity values used in this study are all achievable with
a broad range of naturally occurring transparent dielectric materials.

4.2 Method

We employ the standard density-based topology optimization method to minimize
scattering from a strongly scattering cylindrical object illuminated by a uniform
monochromatic propagating wave. Our investigations are restricted to non-magnetic
materials (μr = 1) and the background material is isotropic and defined by the per-
mittivity, εBG

r . The in-plane wave propagation is perpendicular to the cylinder axis
with either the E or H field being out of plane. Due to the invariance of the elec-
tromagnetic properties along the cylinder axis, the problem can be described by the
Helmholtz’ equation for the Ez or Hz-polarized wave, c.f. equation (2.6). A first
order absorbing boundary condition (ABS)[8] is used as an approximation to the
Sommerfeld radiation condition in order to truncate the infinite domain. We mimic
the strongly scattering cylindrical object by imposing a PEC boundary condition,
n×E = 0, at ΓPEC. The general setup is illustrated by 3 concentric circles in figure
4.2. The inner, middle and outer domains represent the PEC cylinder, the cloak,
and the surroundings, respectively.

The cloak domain wrapped around the cylinder is defined as the design domain,
Ωdes, in which the relative permittivity can be varied continuously in the design pro-
cess in order to minimize the norm of the scattered field. We interpolate linearly
between a lower, εmin

r , and an upper bound on the permittivity, εmax
r . In contrast

to most topology optimization problems intermediate values of the permittivity in
the final design are in this problem both physically sound and realizable as graded
index materials.

The incident field and the total field from the non-cloaked scattering object illu-
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Figure 4.2 Computational Domain. The subfigures (a)-(e) show the design domains
equipped with 1, 2, 3, 4 and 8 symmetry lines, respectively (PEC shown in red). The
design domain with rotational symmetry is given in subfigure (f).

minated by an Ez polarized plane wave are shown in figure 4.3(a) and (b), respec-
tively. The difference between the incident field and the total field is the scattered
field generated by the scattering object. The interference pattern from the scattered
field is very notable for the non-cloaked object especially as a shadow region behind
the cylinder. The objective for the cloaking problem is to achieve zero scattering
from the cloaked object in the surrounding space, Ωout. Hence, the figure of merit
in this thesis for evaluating the cloaking performance is given by the norm of the
scattered field. The formulation of the optimization problem thus takes the form

min
γ

ΦE =
1

WE

∫
Ωout

|Es
z |2 dr objective function (4.5)

subjected to
1∫

Ωdes

dr

∫
Ωdes

γ(r) dr − Vmax ≤ 0 volume constraint (4.6)

0 ≤ γ(r) ≤ 1 ∀r ∈ Ωdes design variable bounds (4.7)

where Vmax is the maximum allowed volume fraction of material 2 and the subscript,
E, reflect the polarization and W is the norm of the scattered field in the outer
domain when no cloak is present. The reference value, W , is included in order to
make the objective dimensionless as well as easy to interpret. By definition Φ is
zero for the incident field (cf. figure 4.3(a)) and unity for the non-cloaked object (cf.
figure 4.3(b)). Thus, if Φ is less than unity in the design process the object with a
cloak wrapped around generate less scattering than the non-cloaked object.

4.3 Topology optimized all-dielectric cloaks[P1]

In the first study [P1] the evolution of the optimized designs along with the cor-
responding cloaking properties are investigated for increasing number of incident
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Figure 4.3 An Ez polarized plane wave (a) incident on a PEC cylinder (b) generate
significant amount of scattering especially as a shadow region behind the cylinder. The
optimized dielectric layout of the cloaks (c)-(h) for 1, 2, 3, 4, 8 and infinitely many
symmetry lines manipulate the wave to flow around the cylinder such that scattering is
minimized. The grey scale indicates the optimized relative permittivity distribution that
ranges between 1 and 6.

angles, i.e. increased symmetry. Efficient optimization for multiple incident angles
can be performed by introducing symmetry constraints on the design. Symmetry
lines divide the original design domain into equally sized sub-domains in a number
corresponding to the number of incident waves. As the number of angles goes to
infinity the design becomes rotationally symmetric as sketched in figure 4.2(h). In
this first study the background material is set to free space, εBG

r = 1, and we in-
terpolate between εmin

r = 1 and εmax
r = 6. We allow graded index to constitute the

design profile.
Using the method outlined we have optimized for 1, 2, 3, 4, 8 and infinitely

many symmetry lines (c.f. figure 4.3). When using 1 and up to 4 symmetry lines
the optimized designs cloak the metallic cylinder nearly perfectly (ΦE < 0.01) for
the considered angles of incidence. The optimized designs for 1-4 symmetry lines
are basically waveguides, which guide and delay the waves inside the cloak and sub-
sequently phase match them to the waves outside. However, the cloaking effect is
highly localized to the considered angles of incidence for these 4 designs. In order to



4.4 Effect of polarization and background material[P2] 25

��� ��� ���
���

��� ��� ���

Figure 4.4 The cloak (a) for 1 symmetry line is near perfect at 0o (b) whereas significant
scattering is generated at 5o (c) The dielectric layout (e) for the cloak optimized to operate
in an interval from -5o to 5o are effective both for incident angles of 0o (f) and 5o (g). The
robust design for small variation in the angle of incidence comes at the cost of increased
scattering (d).

make the cloak more versatile to various angles of incidence, more symmetry lines
are added to the design domain at the cost of increased objective value.

As mentioned above a slight variation in the incident angle results in a dete-
riorated cloaking performance. The cloak for 1 symmetry line is near perfect at
0o whereas significant scattering is generated at 5o as shown in figures 4.4(b) and
(c). A robust design for small perturbations in the angle of incidence is obtained
by illuminating with uniform waves incident in an interval from -5o to 5o on the
design domain and cylinder. The optimization is formulated as a min/max prob-
lem, i.e. the load case, which yields the highest scattering in each iteration step is
minimized. The angle sweep in figure 4.4(d) and the fields patterns in figures 4.4(f)
and (g) clearly shows that the cloak from figure 4.4(e) can be operated in a broader
incident angle interval at the cost of increased scattering.

4.4 Effect of polarization and background material[P2]

Finishing the initial study we wanted to pursue a realization of an all-dielectric fully
enclosing optical cloak designed by topology optimization. In a possible future ex-
perimental setup it may be easier to confine the polarized propagating wave in a
material with higher index than free space and let spatial distributed areas of free
space constitute the optimized design profile of the cloak. This is the ”inverse”
case of the previous study, which was based on distributing material with a higher
permittivity than the background material (free space). Intuitively, distributing di-
electric material having a lower permittivity than the background material would
result in cloaking performance on the same level or better, however, this is not the
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Figure 4.5 Polarization-independent cloak designs and the associated objective values
ΦE,H for Ez and Hz-polarized waves. The optimized material layouts is shown in the top
panels as linear gray-scale plots, where white and black color correspond to εr = 1 and
εr = 2. The middle and bottom panels show the total fields for Ez and Hz polarization,
respectively. Both the graded (a) and discrete design (b) with ε

BG
r = 1 reduce scattering

significantly whereas the graded (c) and discrete (d) counterparts with ε
BG
r = 2 generate

notable scattering.

case as we will show.
Contrary to the previous study we also test the cloaking performance of dis-

crete material designs, which do not permit intermediate values of the permittivity.
Discrete designs are preferred compared to gradient index designs due to the more
advanced fabrication technique needed for the gradient-index designs. Furthermore,
in our initial study we only consider an Ez-polarized wave, but we are also inter-
ested to investigate how well a cloak optimized for an Hz-polarized wave perform
or if it is even possible to find a cloak that works for both polarizations simultane-
ously? Especially the latter case of a design profile that minimize scattering from
both Ez and Hz polarization simultaneously is interesting to study in order to go
towards polarization-independent cloaks. Due to the limited cloaking performance
when distributing material with lower permittivity than the background material,
we switched the focus of the second cloaking problem to cloaks effective for both
Ez and Hz polarization simultaneously. However, by doing so we could at the same
time report our study on the effect of background material.

Discrete designs of the dielectric material are obtained by the deterministic ro-
bust formulation mentioned earlier. However, the robust formulation is here used
in order to get simple designs and not as such to get designs that are robust to
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Figure 4.6 Polarization-dependent discrete cloak designs and the associated objective
values. The bottom panels depict the total fields while the top panels show the optimized
material layouts as linear gray-scale plots, where white and black color correspond to
εr = 1 and εr = 2. The designs in panels (a) and (c) are optimized for Ez-polarization
only whereas the deigns in panels (b) and (d) are optimized for Hz-polarization. Even
though the cloaks (c) and (d) with ε

BG
r = 2 only is required to operate for one polarization,

significant scattering is generated.

manufacturing defects. In this second study we vary the relative permittivity be-
tween εmin

r = 1 and εmax
r = 2 in the cloak domain wrapped around the cylinder. The

permittivity of the background material, εBG
r , (cf. figure 4.1) is either set to 1 or 2,

depending on wether we are distributing dielectric material having a higher or lower
permittivity than the background material, respectively. A symmetry constraint is
imposed on the design with two symmetry lines around which the 4 equally sized
sub-domains can be mirrored. That is, the optimized cloaks only work for two in-
coming wave angles. A min/max formulation for ΦE and ΦH is employed to make
the cloak equally effective for both Ez and Hz polarization.

Graded and discrete designs that minimize the scattering from both Ez and
Hz polarization simultaneously are presented in figure 4.5 (top panels). The total
fields for Ez and Hz polarization are shown in the middle and bottom panels, respec-
tively. In case of εBG

r = 1 the graded design result in scattering less than 1% of the
non-cloaked cylinder and even for the more restrictive case with a discrete design
scattering is reduced to less than 5% for both polarizations. The Hz polarization for
the discrete design yielding less scattering than the Ez polarization, due to the less
restrictive boundary condition for the Hz polarization. Contrary to simple intuition,
considerable scattering is produced by all designs with εBG

r = 2 and graded designs
with εBG

r = 2 produce more scattering than the discrete counter-parts. To analyze
the cause for the degeneration in cloaking performance for designs with εBG

r = 2 we
relax the problem and investigate whether or not effective cloaks with εBG

r = 2 can
be designed individually for either the Ez or Hz polarization.

Discrete design profiles optimized individually for either Ez or Hz polarization
and the corresponding total fields are shown in figure 4.6. Even though we relax



28 Chapter 4 Topology optimized electromagnetic and acoustic cloaks

���	������
 �����������

���
ρ
−1

Al

ρ
−1

Air

κ
−1

Air

κ
−1

Al

ρ
−1

Al

ρ
−1

Air

κ
−1

Air

κ
−1

Al

Figure 4.7 Acoustic cloak design and the associated objective values. A graded design of
air and aluminum is included as a reference design in panel (a) and (b). A discrete design
of air and aluminum with complex features is depicted in panel (c) and (d). The com-
bined scattering pattern from the optimized complex sub-wavelength structures cancels
the scattering from the big cylinder by a resonance effect

the problem and optimize individually for either one or the other polarization de-
signs with εBG

r = 2 result in poor cloaking performance. We thereby see that the
limited cloaking performance for designs with εBG

r = 2 is not caused by the require-
ment on the cloaks to be effective for both polarizations simultaneously. In stead
we conclude that it is a consequence of optical modes tending to concentrate their
electric or magnetic-field energy in regions of high dielectric values.[89] For the de-
signs with εBG

r = 1 the field energy is concentrated in regions of higher permittivity,
wherein the wave is delayed and subsequently phase matched to the waves outside
the cloak. For the designs with εBG

r = 2 we can only design regions, which the
field avoids. Hence it is possible to split the waves in front of the object with very
limited backscattering. However, the waves cannot be collected on the backside of
the object without scattering. The scattering is reduced by a factor of two for Hz

polarization with εBG
r = 2 compared with Ez polarization by coupling the wave into

the surface mode, which makes it easier for the wave to flow around the object.

4.5 Topology optimized acoustic cloaks [P3]

Cloaking devices are mainly associated with electromagnetic waves as studied above.
However, objects can also be cloaked for other types of waves such as elastic waves
in thin-elastic plates[90, 91], plasmonic surface waves[92], matter waves [93], surface
waves in a fluid[94] and acoustic waves[95]. Following our success of designing elec-
tromagnetic cloaks it is natural to extend our numerical setup and attack similar
physical problems with the outlined method. Especially realizing acoustic cloaks
have shown to be very challenging in practice.

In contrast to Maxwell’s equations, the elasticity equations are not invariant un-
der coordinate transformations[96]. However, in Refs. [95, 97] it is shown that the
material layout in cloaks for acoustic waves in a fluid-like materials can be found
with the same technique of transformation optics (by some referred to as transfor-
mation acoustics). Unfortunately, transformation acoustics results in an inhomoge-
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Figure 4.8 A three-step MMOS based optimization approach for acoustic cloak design
with cylindrical aluminum inclusions in air. (a): The design is initialized using 306 alu-
minum cylinders. (b): Optimized design where the cylinders can change in size and
position. (c): Cylinders with a radius smaller than 0.25 cm are discarded. (d): Optimized
design with a lower bound on the radii. (e) Radii of all cylinders are rounded off to 0.5
cm, 1.0 cm or 1.5 cm. (f): Final design after reoptimizing the positions of the cylinders.

neous and anisotropic mass density, which is not common in naturally occurring
fluids, thus making realizations very challenging. Equivalent to the electromagnetic
carpet cloak approach the acoustic problem can also be relaxed to that of hiding
objects on a reflecting surface[98] and a recent realization for airborne sound has
been reported[99]. A fully enclosing acoustic cloak for underwater ultrasound has
also been realized [100] based on an acoustic transmission line approach. As such
most of the reported work are concentrated on realizing the anisotropic material
parameters with engineered acoustic metamaterials[101, 102, 103]. However, our
goal in this problem is with a limited reformulation to use the initial methodology
of designing optical cloaks to design an acoustic cloak with isotropic material prop-
erties to circumvent the problems of the anisotropic mass density.

For the acoustic case air and solid material (aluminum) are redistributed in the
cloak domain in order to minimize the norm of the scattered pressure field (ps ↔ Es

z

in equation (6.2)) in the surrounding domain, Ωout. In the electromagnetic cloak
only one of the material properties (εr) is varied, whereas in the acoustic case both
density, ρ, and bulk modulus, κ are redistributed in the design process. Here the
inverse material properties are interpolated linearly.
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Φ = 0.0021
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Figure 4.9 The final optimized design of an acoustic cloak with cylindrical aluminum
inclusions in air is shown in panel (a). The radii of all cylinders are constrained to take
discrete values of either 0.5 cm, 1.0 cm or 1.5 cm to aid realizations. Near perfect cloaking
is obtained with the optimized cylinder placement as seen from panel (b). The combined
scattering pattern from the optimized sub-wavelength structures cancels the scattering
from the big cylinder by a resonance effect.

In the numerical setup a pressure field with a driving frequency of 4367 Hz is
incident on an aluminum cylinder with a radius of 6.7 cm. A cloak with a radius
of 20 cm is wrapped around the aluminum cylinder. Discrete designs are ensured
because graded designs with a linear interpolation between air and solid material
is difficult to interpret in practical realizations. Nevertheless, an optimized design
profile with intermediate material properties is included here as a reference (c.f.
figure 4.7(a)). The discrete profile (figure 4.7(c)) clearly shows that also acoustic
cloaks can be designed using the outlined optimization method. Contrary to the
electromagnetic cloaks the working principle for the acoustic cloaks is not to change
the speed of the wave. Instead the acoustic cloaks rely on a resonance effect such
that the combined scattering pattern from the optimized sub-wavelength structures
cancels the scattering from the big cylinder. However, the optimized discrete profile
is very challenging (next to impossible) to manufacture, because of the complex
structure. An attainable realization should rather be based on scatters with very
simple and identical feature shapes; preferably small aluminum cylinders. Thus we
apply the MMOS design parametrization described in the preceding chapter such
that cylindrical aluminum inclusions in air constitutes the design.

The optimization is performed in three step. First the design is initialized (c.f.
figure 4.8(a)) using 306 aluminum cylinders, which are allowed to move both in posi-
tion and change in size during the optimization. The radii are initially not restricted
by lower or upper bounds, which means that cylinders effectively can disappear as
their radius becomes infinitely small. After the first convergence shown in figure
4.8(b) cylinders with a radius smaller than 0.25 cm are discarded. With a lower
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bound on the radii of 0.25 cm no cylinders can disappear and a second optimization
finds an optimized design with cylinders of varying radius (cf. figure 4.8(d)). Finally
all the radius of all cylinders are rounded off to either 0.5 cm, 1.0 cm or 1.5 cm as
shown in figure 4.8(e) and a reoptimization with fixed radii gives the final design,
figure 4.8(f). The first step ensures that the topology can change (i.e. cylinders
disappear) and the last step makes the design easy to manufacture.

The final optimized design of an acoustic cloak with cylindrical aluminum in-
clusions in air is shown in figure 4.9(a). Aluminum cylinders with discrete radii
constitutes the design resulting in near perfect cloaking, c.f. figure 4.9(a). The
graded and discrete design from figure 4.7 poses some of the same features, e.g.
a big aluminum inclusion above the cloak. As it turned out a Spanish group[104]
had pursued an idea almost identical to ours. They published their results with
an experimental verification, while we gathered information on how to realize our
acoustic cloak. However, it was thereby demonstrated that acoustic cloaks can be
designed by placing sub-wavelength scatters around the object.
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Chapter 5
Backscattering cloak

Encouraged by the results from the topology optimized cloaks reported in the pre-
vious chapter we looked for further ways to extend the cloak analysis. Here we
relax the full cloaking problem by only requiring elimination of backscattering in
a limited angular range. The less restricted case of cloaking enables us to concen-
trate our study to omnidirectional designs, based on concentric rings of isotropic,
low-contrast, all-dielectric materials readily available in nature. Optimized annular
cloaks have previously been proposed in the literature (cf. Ref. [105]), however the
optimized anisotropic material properties are not easily realizable. Although relaxed
compared to the full cloaking problem, backscattering cloaks are highly relevant in
e.g. radar-setups where source and detector are coincident. The results presented
here are examples of the findings given in [P4].

With very little reformulation the optimization approach reported in the last
chapter can easily be extended to the backscattering problem. However, the sym-
metry of omnidirectional ring design allows us to compute the electromagnetic field
analytically[106, 107, 108]. Derivations of e.g. the far-field on an arc line is much
faster using an analytic expression compared to a FEM solution and ring positions
are not restricted to an underlying mesh. On the other hand the analytic expression
can only be implemented in a sizing optimization of e.g. ring position and thick-
ness thereby loosing some of the design freedom provided by topology optimization.
For the above reasons we choose a two step approach in order to benefit from the
advantages of each method. First we use topology optimization to provide us with
basic understanding of the optimized topology. Next a parametrization of the topol-
ogy optimized designs is used in the optimization approach based on the analytic
expression.

5.1 Topology optimized backscattering designs

The setup for the topology optimization problem is almost identical to the one out-
lined in the previous chapter. Here we minimize the norm of the Ez polarized scat-
tered field in a circular trapezoidal domain enclosed at ± 10o from the backscattering
direction and with inner and outer radii given as 1.75 and 5 free space wavelengths
from the obstacle, respectively (see Ωout in Fig. 5.1(a)). The permittivity is allowed
to vary between εmin

r = 1 and εmax
r = 2 with free space being the background mate-

rial.
The results of the optimization process are surprisingly simple annular Bragg-

like grating structures with layer dimensions that depend on the obstacle radius

33
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Figure 5.1 (a), (b): Topology optimized designs for RPEC/λ ratios of 0.8 and 0.83, re-
spectively, and total fields (c), (d) calculated by finite element analysis. (e): The positions
of layers with εr = 2 are represented by 7 parameters for a 3 layer structure. (f) Total
field for RPEC/λ = 0.82 obtained by the analytic solution.

RPEC. An optimized design (Fig. 5.1(a)) with a thin coating of the obstacle sur-
rounded by three concentric rings is obtained for a radius to free space wavelength
ratio of RPEC/λ = 0.8. A slightly increased cylinder radius (RPEC/λ = 0.83) al-
most eliminates the inner coating layer. Extensive numerical analysis show similar
layered patterns with varying thickness of the inner coating layer for other RPEC/λ
ratios. The amplification of the total field in the layered region indicates that the
optimized structure acts as an annular Bragg grating with a defect introduced by
the PEC cylinder[109]. For a flat obstacle the incoming wave would simply be re-
flected, however, due to the curvature of the grating, the incoming wave couples to
circumferentially propagating and confined ring modes that lead the energy around
the obstacle, resulting in scattering in all but the backscattering direction.

5.2 Analytic solution of the Helmholtz’ equation

The simple geometry of an omnidirectional discrete ring design makes it possible
to solve the Helmholtz’ equation analytically in a cylindrical coordinate system
(ρ,θ) when the material in each ring is homogeneous. A Ez polarized plane wave
propagating in the positive x-axis in a standard cartesian coordinate system can be
described in a cylindrical coordinate system using cylindrical wave transformation[2]

Ei
z = E0e

−jk0x = E0

∞∑
n=−∞

(j)nJn(k0ρ)e
jnθ (5.1)
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where j =
√−1, E0 = 1 is the normalized amplitude of the incident plane wave, n

is the summation order, Jn is the n’th bessel function and k0 is the wave number in
the outer region. The scattered field, Esc

z , in the outer region is given as

Es
z = E0

∞∑
n=−∞

(j)nAnH
(1)
n (k0ρ)e

jnθ (5.2)

where H
(1)
n are the Hankel functions of the first kind (outward propagating cylindri-

cal wave) and An are the unknown coefficients, which can be determined from the
boundary conditions. The total field, Et

z, in the outer region can be found as the
sum of the incident, Ei

z, and scattered field, Es
z , whereas in ring m the total field is

given as a superposition of an in- and outgoing cylindrical wave

Et
z = E0

∞∑
n=−∞

(j)n[BnH
(2)
n (kmρ) + CnH

(1)
n (kmρ)]e

jnθ (5.3)

where H
(2)
n is the Hankel function of the second kind (inward propagating cylindrical

wave), Bn and Cn are unknown sets of coefficients to be determined by the boundary
conditions.

Apart from the PEC boundary condition at the innermost boundary, two inde-
pendent continuous boundary conditions and two sets of unknown coefficients are
introduced for each boundary yielding a linear equation system to be solved. The
total field (c.f. figure 5.1(f)) obtained from the analytic solution with the extracted
positions of the layers from the topology optimized design for RPEC/λ = 0.83 shows
almost perfect agreement with the finite element solution.

5.3 Method

From the topology optimized designs we see that the layered design should start with
a high index (εr = 2) layer as the innermost ring (coating) and alternate between
free-space and high index material. Based on this interpretation, the topology of
the rings can be parameterized as shown in Fig. 5.1(e). The outer radius of the
coating layer is given by r0 and ring n is parameterized by its center radius rn and
its thickness tn. Together with the analytical solution from equation (5.2), these
parameters are used as inputs to a simpler optimization procedure based on the
fmincon function in Matlab. Here we minimize the norm of the scattered field on
a ±10◦ arc line Γout, in the far-field (e.g. ρ = 60λ) of the backscattering direction.
This allows some scattering to occur in the near-field of the cloak, but minimizes
scattering in the far-field. Furthermore, simple geometric constraints on the design
are included to prevent overlapping boundaries, which would corrupt the analytic
solution. Given the analytic solution to the scattered field from equation (5.2) the
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Figure 5.2 (a): Optimized positions of 3 rings (a) illuminated by an Ez-polarized plane
wave and the cloaking performance for 0.2 ≤ RPEC/λ ≤ 3.0. Left axis represents the
optimized positions of the inner (red) and outer (blue) boundaries for the εr = 2 layers.
Cloaking performance for εr = 2 (crosses) and εr = 4 (squares) are given by the right
axis. (b): Optimized positions, represented by the gray-shaded areas, of a 6-ring (εr = 2)
cloak and the cloaking performance (squares) for 3.0 ≤ RPEC/λ ≤ 10.0. Dashed red
and blue lines represent the positions of conventional quarter-wavelength annular Bragg
grating with corresponding cloaking performance given by the solid green lines.

optimization problem is formulated as

min
rn,tn

Φ =
1

W

∫ 10◦

−10◦
|Es

z(ρ = 60λ, θ)|2dθ objective function (5.4)

subjected to r0 − RPEC > 0 design variable bound (5.5)

(r1 − t1)− r0 > 0 design variable bound (5.6)

(rn − tn)− (rn−1 − tn−1) > 0 design variable bounds (5.7)

tn > 0 design variable bounds (5.8)

where W is the norm of the scattered field on Γout for the non-cloaked PEC cylinder.

5.4 Results

Good cloaking performance is achieved for 3 position and thickness optimized high
index (εr = 2) layers when RPEC/λ < 1.3, however for larger ratios the cloaking per-
formance deteriorates. The cloaking performance can be improvement significantly
in several ways. Increasing the permittivity in the high index rings and reoptimize
the positions and thicknesses of the rings enables higher amplification and a higher
confinement of the ring modes, such that backscattering can be reduced more effi-
ciently. Increasing the number of high index rings and thereby giving the optimizer
more freedom is another intuitive way of improving the cloaking performance as seen
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Figure 5.3 Total field (a) for an optimized 6-ring cloak (εr = 4, RPEC/λ = 10) illumi-
nated by an Ez-polarized wave. Norms of the scattered field are given in a log10-scale
for the non-cloaked (b) and the cloaked PEC cylinder (c). Even if illuminated by an Hz-
polarized plane wave (d) the Ez-optimized cloak shows good backscattering performance.

in figure 5.2(b). Furthermore, if the requirement to the size of the angle interval
is relaxed, we can get significantly stronger reduction of the backscattering in the
reduced angular range as one would expect.

We have tried to identify a simple rule for the optimal dimensions of the
cloak. However, the problem is more complicated than for simple annular Bragg
resonators[110] due to the coupling of the incoming wave to the circumferential
waves. The semi-periodic variation of the radius of the inner coating is attributed
to the optimized structure adapting itself to new ringmodes that enable the confine-
ment. Since the effective circumferential index is hard to define we do not believe
that it is possible to determine a closed-form rule for the optimal dimensions of
the cloak. Nevertheless, we compare our optimized results with a simple quarter-
wavelength annular Bragg cloak with high index material starting in the innermost
layer (coating) and find fairly good behavior - especially for larger obstacle radii.
Furthermore the layout and the cloaking performance for the optimized 6-ring struc-
ture converge to those of the corresponding simple annular Bragg grating, when the
radius of the PEC cylinder becomes much larger than the wavelength.

By combining the above findings an optimized 6-ring structure (εr = 4) illumi-
nated by an Ez-polarized wave obtain good cloaking performance even for a large
cylinder radii (RPEC = 10λ), c.f. figure. 5.3. Even though the radius of the PEC
cylinder is 10 times the wavelength the norm of the scattered field in the backscatter-
ing direction is less than 2% of the norm of the scattered field from the non-cloaked
cylinder. The outlined optimization procedure can equivalently be used in the Hz-
polarized case. However, a simple quarter-wavelength Bragg grating is polarization
independent and as expected the Ez-optimized cloak also shows good backscattering
performance when illuminated by an Hz-polarized plane wave, c.f. figure 5.3(d).
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Chapter 6
Efficiently coupling into the surface plasmon mode

In the previous problems we have seen how topology optimized designs can ma-
nipulate waves such that scattering from an obstacle have been eliminated almost
perfectly in all directions or in a specified angular range. For other types of wave
problems it might be of interest to manipulate waves to propagate in a specified
direction. The wave manipulation problem studied in this chapter is about the effi-
cient excitation of surface plasmon polaritions propagating along a dielectric-metal
interface. Topology optimization is employed to find topologies for grating couplers,
such that the in and out-coupling efficiency of the plasmonic surface waves are max-
imized. The chapter is a summary of publication [P5].

6.1 Surface plasmon polaritons

The effects of Surface Plasmons (SPs) were first reported in the literature in the
beginning of the 20th century by Wood[111], however localized surface plasmon res-
onance have been used to give color in stained glass for thousands of years[112].
50 years later Ritchie predicted in 1957 the existence of surface plasmons at metal
surfaces. Within the last 15 years many novel discoveries (e.g. enhanced light
transmission[113]) have sparked an increased interest for surface plasmons to be uti-
lized in optical devices, e.g. photonic circuits[114], subwavelength waveguides[115]
and solar cells[116].

Overall, surface plasmon can be divided into two categories[117], surface plas-
mon polaritons (SPP) propagating on plane surfaces and localized (non-propagating)
surface plasmons in small subwavelength nano-particles. In this work we will concen-
trate our focus on the former. SPPs are collective charge oscillations of a conductor’s
free electron gas (cf. figure 6.1) creating regions of high charge density (+) and low
charge density (-). This motion effectively creates a traveling longitudinal electron
wave equivalent to the longitudinal acoustic pressure wave. The longitudinal elec-
tron wave is coupled to an external electromagnetic field that propagate along an
interface between a metal with negative real part and a dielectric with positive real
part of the permittivity[118]. The electric field oscillates in the (x, y)-plane mak-
ing the SPPs transverse magnetic on a plane perpendicular to the interface, hence
the magnetic field is polarized in the z-direction as shown in figure 6.1. The SPPs
are confined at the interface due to a momentum (energy) mismatch between the
SPPs and the incident wave. Simply shining light on a plane surface will not ex-
cite the SPPs, cf. figure 6.1(c). Coupling to the SPP mode can be performed by
grating couplers[119], prism couplers[120, 121], near-field excitation[122], end-fire

39



40 Chapter 6 Efficiently coupling into the surface plasmon mode

(a) (b)

(c) (d)SiO2

Ag

SiO2

Ag

E
Hz

k

Hz

E
k

y
xz

θ

Ag

SiO2
y E

Hz
xz

+ − − + + − − + + − −

Figure 6.1 Utilizing a grating coupler (a) a SPP (b) is excited at the interface between
a metal and a dielectric. The collective charge oscillations(b) results in regions with
low(-) and high(+) surface charge densities. An electric field, E, can couple to the charge
oscillations in the (x, y)-plane and thereby forcing a magnetic field to be polarized in the z-
direction. Without any coupling mechanism the incident wave will be reflected(c), however
a grating coupler(d) phase-match the parallel wave-vector component of the incident field
to that of the SPP mode.

couplers[123] and broad-side couplers[124]. We will in this work concentrate our
attention to grating couplers. The working principle of grating couplers is to match
the parallel wave vector component of an incident field to that of the SPP using
topological defects at the surface, e.g. grooves. An excited SPP are likewise bound
to propagate along the metal-dielectric interface until energy is lost via absorption
in the metal or the SPP encounters a grating coupler and are coupled out again.

Design of grating couplers consist of determining the spatial distribution of metal
and dielectric material that enables an efficient excitation of SPPs, thus making it
a good candidate problem for the topology optimization approach. Several stud-
ies [125, 126, 127, 128, 129] on the effect of different groove designs in regards to
coupling efficiency have been reported in literature. However, most of the studies
are limited to geometric parameter studies combined with heuristic search schemes.
Lately, in [130] a systematic optimization of coupling into a SPP mode was per-
formed. Using a hierarchal search optimization algorithm, varying the width and
position of 14 grooves the authors achieved an impressive excitation efficiency of
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Figure 6.2 Computational models for the input and output couplers containing a di-
electric (ΩSiO2

), a metal (ΩAg), and a design domain (Ωdes). A plane wave is excited at
Γin. A SPP will be induced at the interface between the two media and the power flow
is measured in the domain Ωout. To avoid reflections from the boundaries, PML domains
ΩPML and absorbing boundary condition Γabs have been introduced.

50%. The optimized grating coupler from [130] is employed in figure 6.1(d) to visu-
alize the excitation of a SPP. In contrast to heuristic search approaches the topology
optimization method do not limit the grooves to a certain shape, e.g. rectangular,
but allow free shapes and topologies. In this study we employ the topology opti-
mization method to determine efficient topologies for both in and output grating
couplers.

6.2 Method

Material and geometry settings from [130] are here reused. The computational
models for the input and output couplers are sketched in figures 6.1 (a) and (b),
respectively. Both models consist of a SiO2-domain, ΩSiO2

, an Ag-domain, ΩAg, and
a design domain, Ωdes, where SiO2 and Ag shall be distributed freely. Reflections
from the boundaries are eliminated using perfectly matched layers (PML)[9]. Fur-
thermore, first order absorbing boundary conditions, Γabs, have been introduced on
all outer boundaries[8]. The design domain, Ωdes, has a width and height of 2.5 μm
and 50 nm, respectively. Following the standard density approach from topology
optimization, the material distribution in the design domain, Ωdes, can be changed
by varying the permittivity of individual finite elements continuously between the
material values for SiO2 and Ag. The following interpolation models the relation
between element densities and element permittivities

εr(γe) = ε′Ag + γe
(
ε′SiO2

− ε′Ag

)− j
[
ε′′Ag + γe

(
ε′′SiO2

− ε′′Ag

)]
+ j4d(γ2

e − γe) (6.1)
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(a) Design domain, Ωdes, is indicated as grayscale

(b) Input coupler, efficiency: 68.71%

(c) Output coupler, efficiency: 51.52%

(d) Coupler from [130], efficiency: 49.74%

Ωdes

Figure 6.3 Optimized designs of an in and output grating coupler.

where ′ and ′′, respectively, denote the real and the imaginary parts of the per-
mittivity for the given material and d is a factor introducing artificial damping.
This damping induces an energy loss for intermediate values of γ and disfavors non-
discrete values in the final design [31].

The objective of this optimization problem is to maximize the power flow (av-
eraged Poynting vector), in the domain Ωout in the negative direction of the x-axes,
n = (−1, 0), for the input coupler and in the beam direction, n = (−√

2/2,
√
2/2),

for the output coupler. Thus the optimization problem is formulated as

max
γ

Φ(Hz(γ)) =

∫
Ωout

1

2ω
Re

[
iε−1

r H∗

z∇Hz

]
· n dr objective function (6.2)

s.t.
1∫

Ωdes

dr

∫
Ωdes

γ(r) dr − Vmax ≤ 0 volume constraint (6.3)

0 ≤ γ(r) ≤ 1 ∀r ∈ Ωdes design variable bounds (6.4)

where n gives the direction of the power flux. The decay length of the surface
plasmon, its skin-depth in the two materials and the generated power flow are used
to evaluate the efficiency of the coupling in the post-processing step.

6.3 Results

For the input coupler a time-harmonic wave is excited at Γin with a free-space wave-
length of 476 nm. The wave is Gaussian shaped with full width half maximum =
1μm and has an incident angle of 45o. For the output grating coupler the surface
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Figure 6.4 Norms of the magnetic field generated by the optimized input (c) and output
coupler (d). The surface plasmon polariton mode cannot be excited without any coupling
mechanism(a). The grating coupler from Ref. [130] is shown in (b) as a reference design.

plasmon is excited at Γin with an exponentially shaped electromagnetic wave match-
ing the skin depth. For both cases, the permittivities of SiO2 and Ag corresponding
to the given wavelength are εr = 2.25 and εr = −7.06− j0.27, respectively, and the
permeability is assumed to be μr = 1 for both materials. We use an initial guess of
pure silver in the design domain Ωdes, which is shown in figure 6.3(a) with length
scales. The optimized designs for the input and output couplers obtained using the
described methodology are presented in figures 6.3(b) and (c), respectively. For the
purpose of comparison we have presented the grating coupler from [130] in figure
6.3(d).

The optimized design for the input coupler consists of 13 slanted grooves of in-
creasing width and decreasing depth. The optimized design represents an efficiency
of 68.7% which is a approximately a factor of 0.4 higher than the efficiency of the
grating coupler from [130]. The optimized design of the output coupler is very simi-
lar to the optimized design of the input coupler, but with an extra groove at the right
side of the design domain. Figure 6.4 shows the magnetic field norm for a setup
with smooth surface (a), the grating coupler from [130] (b), the optimized input
coupler (c) and the optimized output coupler (d). A notable standing wave pattern
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is seen for the smooth surface generated by the incident and the reflected wave. In
contrast, for the input coupler a significant field enhancements are obtained at the
metal-dielectric interface due to the SPPs being very localized to the surface of the
metal. At the end we note that the optimized output coupler is indeed better than
the reversed input coupler. Equal topologies for the two cases are not expected due
to different loss mechanisms in the incoming and outgoing wave cases.



Chapter 7
Fresnel zone plate lens

The optimized output grating coupler presented in the preceding chapter manipu-
lated a optical wave to propagate in a direction of 45◦ to the surface. The final design
problem of this thesis concerns not only directing but also focusing of a propagating
wave into a single focus or multiple foci. A device for focusing of electromagnetic
energy works by means of either diffraction, refraction, reflection or any combina-
tions of the three. Quite many devices can focus electromagnetic waves and in the
problem covered here the spatial layout of half opaque Fresnel zone plate lenses is
optimized such that the wave energy in one point or multiple points is maximized.
The results presented here are examples of the findings given in [P6].

7.1 Fresnel zone plate lenses

Fresnel zone plates (FZP) lenses work by means of diffraction and constructive
interference instead of refraction and reflection and can be divided into two types,
half-opaque FZPs (also called Soret zone plate) and phase-correcting FZPs. The
former type is built of alternating transparent and opaque concentric rings to block
out alternating Fresnel zones, c.f. figure 7.2, whereas the latter type is constructed
to correct phases in various zones by varying the dielectric constant or the depth of
the profile. Here we focus our attention to the half opaque FZP.

Refractive optics cease to be effective (and thereby conventional lenses) for
wavelengths shorter than the visible spectrum until the hard X-ray region[131],
because solids in this spectrum are strongly absorbing. Half opaque FZPs on the
other hand work well in this spectrum[132]. Further, FZPs are in general desirable
as focusing devices due to their simplicity of design, easy fabrication and low cost.
However, a disadvantage of the half-opaque FZP lens type is that approximately
half the energy of the incident wave is lost, due to the opaque zones, resulting in low
aperture efficiency. This shortcoming can to some extent be remedied by combining
several zone plate structures as a layered FZP[133] or by using a reflector based
FZP[18]. A simple closed form design rule for FZPs when the incident wave is
normal to the aperture can be derived for ray optics[134]. Constructive interference
at the focus are obtained when the zones switch from opaque to transparent at radii
where

rn =

√
2nFλ

P
+

(
nλ

P

)2

(7.1)

where rn is the radius from the focal axis to the outer edge of the n’th zone, n is the
zone number, F is the focal length, λ is the wavelength of the incident wave and P is

45
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Figure 7.1 Half opaque Fresnel zone plate lens (a) focus an incident plane wave in a
single point. The black regions corresponds to opaque rings and their placement (b) can
be derived using ray optics, c.f. equaition (7.1). The geometry of a planar zone plate (c)
is invariant in one dimension. The total field and field norm for a planar zone plate with
dimensions derived by equation (7.1) are shown in panels (d) and (e), respectively.

the number of phase corrections (P = 2 for a half-opaque FZP). However, equation
(7.1) is known not to be optimal. A simple correction such as compressing the zone
plate radially using a scalar coefficient k less than unity rnewn = k rn results in a more
efficient design[18]. Furthermore, several design methodologies have been developed
to give the FZP special features such as dual-band FZPs[135], bifocal FZPs[136] and
non-planar shaped FZPs[18]. Furthermore, the spatial distribution of either opaque
material (for half-opaque FZPs) or dielectric material (for phase-correcting FZPs)
calls for an optimization technique and several optimization methodologies have been
reported[137, 138, 139] using search algorithms in the two first cited references and
a genetic algorithm in the latter. In this study we employ the topology optimization
method to find the spatial placement of opaque material for planar Fresnel zone
plates.
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7.2 Method

The geometry of a planar zone plate is invariant in one dimension as shown in
figure 7.2(c). The computational domain can thereby be formulated in a plane
perpendicular to the zone plate for efficient computation of the out-of-plane mode
for either an Ez or Hz polarized plane wave. The infinite domain is truncated by
perfectly matched layers backed up by a first order absorbing boundary condition[8].
We employ topology optimization in the standard density based approach. In the
previous studies material is redistributed in a domain. In contrast, here the idea
is to continuously vary, between full transmission and opacity in each boundary
element at a specified design boundary. To do so, the design boundary Γdes is
modeled by a transition boundary condition[140] for an Ez or Hz polarized wave,
which respectively can be formulated as

η n× (H1 −H2) + Ez = 0 Ez-polarization (7.2)

η n× (E1 −E2) + n× E1 = 0 Hz-polarization (7.3)

where η is the surface impedance. The transition boundary condition models a thin
layer of conducting, non-magnetic material. When η → ∞ equation 7.2 and 7.3
mimic full transmission and when η = 0 equation 7.2 and 7.3 is equivalent to the
PEC condition (opaque). This property of the transition boundary condition can be
exploited in the topology optimization approach using the surface impedance in the
material interpolation. A design variable, γe ∈ [0; 1] , for each boundary element is
introduced in order to interpolate between opacity and full transmission mimicked
by ηmin = 10−2 and ηmax = 106, respectively. A power interpolation function[33] is
used, due to the big difference in orders of magnitude.

ηe(γe) = ηmax

(
ηmin

ηmax

)γe
(7.4)

In order to focus electromagnetic radiation, the objective is to maximize the norm
of the total field at the specified foci points. The resulting optimization problem is
formulated as

max
γ

Φ =

n∑
k=1

1

Wk
|Ez(rk)|2 objective function (7.5)

subjected to
1∫

Γdes

dr

∫
Γdes

γ(r) dr − Vmax ≤ 0 volume constraint (7.6)

0 ≤ γ(r) ≤ 1 ∀r ∈ Γdes design variable bounds (7.7)

where n is the number of foci points and Wk is the field norm at the k’th focal point
when no FZP is present.
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Figure 7.2 Half opaque Fresnel zone plate designs at 2.75 GHz with a focal length
F = 0.25 m. The dashed red line shows the position of the optical axis around which
the zone plates are symmetric; hence only the upper parts of the zone plates are shown.
The filter technique and target polarization are written above the designs. The optimized
Fresnel zone plates performance significantly better than the analytic design derived from
equation (7.1).

7.3 Results

Initially, a one layered half opaque zone plate is studied, and optimized designs as
well as their performance are compared to a design derived by the analytic expression
in equation (7.1). The target frequency is chosen to be 2.75 GHz and and the focal
length to F = 0.25m. The height of the design boundary is set to 1.5 m, i.e. 0.75
m on each side of the optical axis. The optimized designs along with the analytic
reference zone plate are presented in figure 7.2. Two different filtering techniques
are used, the density filter and the deterministic robust formulation. The former
allow grayscale to occur whereas discrete designs can be obtained by the latter. The
zone plates obtained with the density filter have a higher ability to focus the wave
with the polarization for which they are optimized than their discrete counter-parts.
However, especially in the case of the density filtered zone plate for Ez-polarization
significant gray-scale appear on the side of plates pointing away from the optical
axis. The intermediate densities may at first be interpreted as imperfect conducting
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Figure 7.3 Field norms, zone plate designs (represented by the green lines) and the
associated objective values. The topology optimized, polarization independent, zone plate
(panels (b) and (f)) yield higher focusing performance compared to zone plates (panels (a)
and (e)) designed by the traditional simple design rule for both Ez and Hz polarization.
Bifocal design with foci on a vertical (c) and horizontal axis (g) can be obtained on the
cost of the focusing intensity. A convex-shaped zone plate (d) performs better than the
planar.

material. However, in [141] a similar study in 3D shows that the optimized design of
circular Fresnel zone plates have ”shark teeth” which points away from the optical
axis for the Ez polarization. The intermediate densities in the planar case effectively
mimic this ”shark teeth” topology of the optimized 3D zone plates. It is worth to
note that the discrete designs perform well for both polarizations even though they
are only optimized for one polarization. A natural extension is to optimize for both
polarizations simultaneously and the resulting design does not differ significantly
from the two other discrete designs. It is worth to mention that all zone plates are
compressed radially compared to the analytic design. This is in accordance with the
findings from [18].

The field norms for the analytic reference design and the topology optimized
zone plate that is optimized for both Ez and Hz polarization, are shown in figure
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Figure 7.4 Frequency sweep for a single layered (dashed line) and 4 layered zone plate
(solid line) illuminated by an Ez polarized plane wave. The focusing performance are
improved significantly using a min/max formulation for three target frequencies at 2.5
GHz (b), 2.75 GHz (c) and 3.0 GHz (d) compared to the single layered zone plate (a),
which is optimized for a single frequency.

7.3. The polarization independent zone plate (Ez + Hz in figure 7.2) designed by
topology optimization yields higher focusing performance compared to the analytic
reference zone plate designed by the design rule from equation (7.1).

The outlined design methodology can handle a broad spectrum of design features.
As examples two bifocal zone plates with foci on a vertical or horizontal axis are
likewise shown in figures 7.3(c) and (g), respectively. However, the bifocal properties
are obtained at the cost of focusing intensity. The methodology can also handle
complex shaped design boundaries, e.g. a convex-shaped design (figure 7.3(d)).

A frequency sweep, c.f. figure 7.4, reveals that the focusing performance of the
one layered zone plate illuminated by an Ez polarized wave somewhat deteriorates
for other frequencies than the target frequencies. A broad banded effect is obtained
for 4 layered zone plate with a min/max formulation for three target frequencies
(2.5 GHz, 2.75 GHz and 3.0 GHz). A distance of half the wavelength separates each
layer in the zone plate. The focusing performances are on the same level for the
three target frequencies and approximately 2.5 times higher than the single layered
zone plate at 2.5 GHz and 3.0 GHz.



Chapter 8
Concluding remarks

This thesis presents the study of wave manipulation of acoustic and electromagnetic
waves by topology optimization. A method of designing acoustic or electromagnetic
cloaks that can be realized with readily available materials is outlined. The material
layout of the cloaks is determined by topology optimization such that the scattered
field is minimized in all directions or a specified angular range. The evolution of
topology optimized electromagnetic cloaks operating at various degrees of symmetry
is presented. The analysis reveals that near perfect cloaking can be achieved in a
limited frequency range when the cloaks are operating at up to 4 symmetric angles
of incidence. The working principle for the cloak is to delay the waves in regions
of higher permittivity than the background and subsequently phase match them to
the waves outside. For an Hz-polarized wave, the optimized designs can take ad-
vantage of the surface mode at the PEC boundary, and achieve less scattering than
the optimized designs for the Ez-polarized wave. Even a directional all-dielectric
low-contrast cloaks that achieve good cloaking performance for both Ez and Hz

polarization can be designed with this method. Further findings indicate, perhaps
contrary to simple intuition, that fully enclosed, all-dielectric cloaks can not be
designed effectively when distributing a material with lower permittivity than the
background material. Directional acoustic cloaks can also be designed using the
topology optimization method. Aluminum cylinders constitute the design and their
placement and size is optimized such that their combined scattering pattern cancel
the scattering from a big cylinder.

It is also shown that the backscattering from a PEC cylinder illuminated by a
plane wave can be minimized by wrapping the cylinder in a cloak composed of annu-
lar rings made of non-absorbing, low-contrast, dielectric material readily available in
nature. The layered Bragg-like structure amplifies and couples the field into confined
ring-modes, which lead the wave around the cylinder hence reducing backscattering.
Cloaking performance can be improved by increasing the number of rings wrapped
around the PEC cylinder, increasing the permittivity of the high index material
and/or relaxing the requirement to the size of the angle interval defining backscat-
tering.

The topology optimization method is further employed in optimizing grating
couplers for efficient in and out-coupling of electromagnetic surface waves at a metal-
dielectric interface. Results indicate that efficiencies beyond 68% are possible for
slanted grove-based gratings. The designs presented here are shown as specific so-
lutions; however, the general concept of the improved efficiency by slanted grooves
may inspire future realizations of efficient grating couplers.

Finally, a topology optimization based design methodology for improved energy
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focusing from planar half opaque Fresnel zone plate lenses is outlined in this the-
sis. The transition boundary condition can model full transmission or opacity at
a specified design boundary depending on the surface impedance. This property
is exploited by varying the surface impedance in each boundary element for im-
proved energy focusing. The topology optimized zone plates yield higher focusing
performance compared to zone plates designed by the traditional simple design rule
derived for ray optics. Furthermore, the outlined design methodology can handle a
broad spectrum of design features such as multiple layers, bifocal properties, broad
banded designs etc. in one combined approach.

8.1 Future work

The work summarized in this thesis can be extended in several ways in future studies.
The list below contains the most important directions in which future research should
be directed towards

• Realize the optimized cloak designs. Specially a realization of the annular ring
design constituting the backscattering cloak seems attainable.

• Examine the possibilities for a near omnidirectional acoustic cloak based on
aluminum cylinders.

• Extend all implementations to include Padé approximation such that the dif-
ferent devices can be optimized over larger frequency ranges.

• An equivalent study for minimizing backscattering can be performed for a
sphere instead of a cylinder.

• Extend the idea of using the transition boundary condition to 3D designs.
Optimized microstrip patch antennas could perhaps be designed using this
idea.
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[108] M. KERKER and E. MATIJEVIć, “Scattering of electromagnetic waves from
concentric infinite cylinders,” J. Opt. Soc. Am., vol. 51, pp. 506–508, May
1961.

[109] J. Scheuer and A. Yariv, “Annular bragg defect mode resonators,” J. Opt.
Soc. Am. B, vol. 20, pp. 2285–2291, Nov 2003.

[110] M. A. Kaliteevski, R. A. Abram, V. V. Nikolaev, and G. S. Sokolovski, “Bragg
reflectors for cylindrical waves,” Journal of Modern Optics, vol. 46, pp. 875–
890, Apr. 1999.

[111] R. Wood, “Xlii. on a remarkable case of uneven distribution of light in a
diffraction grating spectrum,” Philosophical Magazine Series 6, vol. 4, pp. 396–
402, Sept. 1902.

[112] H. A. Atwater, “The promise of plasmonics,” Sci. Am., vol. 296, pp. 56–63,
Apr 2007.

[113] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Ex-
traordinary optical transmission through sub-wavelength hole arrays,” Nature,
vol. 391, pp. 667–669, Feb. 1998.



62 References

[114] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwave-
length optics,” Nature, vol. 424, pp. 824–830, Aug. 2003.

[115] S. Bozhevolnyi, Plasmonic Nanoguides and Circuits. Pan Stanford Publishing,
2008.

[116] V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic
nanostructure design for efficient light coupling into solar cells,” Nano Lett.,
vol. 8, pp. 4391–4397, Nov. 2008.

[117] S. Maier, Plasmonics: Fundamentals and Applications. Springer, May 2007.

[118] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings.
Springer, 1988.

[119] Y.-Y. Teng and E. A. Stern, “Plasma radiation from metal grating surfaces,”
Phys. Rev. Lett., vol. 19, pp. 511–514, Aug 1967.

[120] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the
method of frustrated total reflection,” Zeitschrift fr Physik A Hadrons and
Nuclei, vol. 216, pp. 398–410, 1968. 10.1007/BF01391532.

[121] E. Kretschmann and H. Raether, “Radiative decay of non radiative surface
plasmons excited by light,” Z. Naturforsch., vol. 23a, pp. 2135–2136, 1968.

[122] B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local ex-
citation, scattering, and interference of surface plasmons,” Phys. Rev. Lett.,
vol. 77, pp. 1889–1892, Aug 1996.

[123] G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface
polaritons by end-fire coupling,” Opt. Lett., vol. 8, pp. 386–388, July 1983.

[124] R. Charbonneau, E. Lisicka-Shrzek, and P. Berini, “Broadside coupling to
long-range surface plasmons using an angle-cleaved optical fiber,” Applied
Physics Letters, vol. 92, no. 10, p. 101102, 2008.

[125] T. Tamir and S. Peng, “Analysis and design of grating couplers,” Applied
Physics A: Materials Science & Processing, vol. 14, pp. 235–254, 1977.
10.1007/BF00882729.

[126] E. Moreno, D. Erni, C. Hafner, R. Kunz, and R. Vahldieck, “Modeling and
optimization of non-periodic grating couplers,” Optical and Quantum Elec-
tronics, vol. 34, pp. 1051–1069, 2002. 10.1023/A:1021172003924.

[127] D. P. Ceperley and A. R. Neureuther, “Engineering surface plasmon grating
couplers through computer simulation,” in J. Vac. Sci. Technol. B, 2008.



References 63

[128] C. Peng and W. Challener, “Input-grating couplers for narrow gaussian beam:
influence of groove depth,” Opt. Express, vol. 12, pp. 6481–6490, Dec 2004.

[129] G. Leveque and O. J. F. Martin, “Optimization of finite diffraction gratings
for the excitation of surface plasmons,” Journal of Applied Physics, vol. 100,
no. 12, p. 124301, 2006.

[130] J. Lu, C. Petre, E. Yablonovitch, and J. Conway, “Numerical optimization of
a grating coupler for the efficient excitation of surface plasmons at an ag-sio2
interface,” J. Opt. Soc. Am. B, vol. 24, pp. 2268–2272, Sep 2007.

[131] B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Gnzler, O. Ku-
rapova, F. Zontone, A. Snigirev, and I. Snigireva, “Refractive x-ray lenses,”
Journal of Physics D: Applied Physics, vol. 38, no. 10A, p. A218, 2005.

[132] A. V. Baez, “A self-supporting metal fresnel zone-plate to focus extreme ultra-
violet and soft x-rays,” Nature, vol. 186, pp. 958–958, June 1960.

[133] G. Z. Jiang and W. X. Zhang, “Theoretical and experimental studies of the
fresnel zone plate lens antenna,” Electromagnetics, vol. 19, pp. 385–399, July
1999.

[134] J. C. Wiltse, “Zone plate designs for terahertz frequencies (invited paper),”
vol. 5790, pp. 167–179, SPIE, 2005.

[135] J. C. Wiltse, “Dual-band fresnel zone plate antennas,” vol. 3062, pp. 181–185,
SPIE, 1997.

[136] W. D. Furlan, J. A. Monsoriu, and G. Saavedra, “Focusing properties of ape-
riodic zone plates,” vol. 6317, p. 63171B, SPIE, 2006.

[137] L. Baggen and M. Herben, “Design procedure for a fresnel-zone plate an-
tenna,” International Journal of Infrared and Millimeter Waves, vol. 14,
pp. 1341–1352, June 1993.

[138] P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, “Laser direct writing of volume
modified fresnel zone plates,” J. Opt. Soc. Am. B, vol. 24, pp. 2090–2096,
Sept. 2007.

[139] D. Reid and G. Smith, “A full electromagnetic analysis for the soret and folded
zone plate antennas,” Antennas and Propagation, IEEE Transactions, vol. 54,
no. 12, pp. 3638–3646, 2006.

[140] T. Senior, J. Volakis, and I. of Electrical Engineers, Approximate boundary
conditions in electromagnetics. IEE electromagnetic waves series, Institution
of Electrical Engineers, 1995.



64 References

[141] Aage, Topology optimization of radio frequency and microwave structure. PhD
thesis, Technical University of Denmark, 2011.



Publication [P1]

Topology optimized low-contrast
all-dielectric optical cloak





Topology optimized low-contrast all-dielectric optical cloak
Jacob Andkjæra� and Ole Sigmund
Department of Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

�Received 13 August 2010; accepted 22 December 2010; published online 13 January 2011�

A systematic methodology for designing low-contrast all-dielectric cloaks operating in the optical
range is presented. Topology optimization is used to find the layout of standard dielectric material
that minimizes the norm of the scattered field in the surroundings of the cloak. Rotational
symmetries are exploited to optimize for multiple angles based on the solution for a single angle of
incidence. For a few discrete angles of incidences �1–4� the cloaking is shown to be nearly perfect
in a limited frequency range, and even for a rotational symmetric design, cloak and object appear
smaller than the noncloaked object. © 2011 American Institute of Physics. �doi:10.1063/1.3540687�

With the development of transformation optics,1,2 the old
dream of a device which when wrapped around an object
will render the object invisible to the human eye seems
within reach. In order to hide a given object for a specific
frequency range in the electromagnetic spectrum, it is neces-
sary to obtain the electromagnetic properties of this so-called
cloak and be able to realize these properties. The electromag-
netic properties, permittivity and permeability, for a cloak
can be derived by the aforementioned transformation
optics.1,2 However, no materials readily available in nature
possess the required extreme properties, and hence this calls
for a method to artificially engineer materials that do so. So
far microwave and near-optical frequency realizations have
been achieved based on the use of metamaterials.3,4 The
tailored microstructure of such metamaterials has to be
much smaller than the wavelength, and this makes it very
challenging to realize the desired magnetic properties for op-
tical frequencies. Even though several studies have made ap-
proximations to ideal cloaking5–8 and all-dielectric carpet
cloaking has been demonstrated,9 nobody has systematically
addressed the intriguing question: “How efficiently can we
cloak when using conventional simple isotropic dielectric
media readily available in nature?”

In this work we apply gradient-based topology
optimization10 to find the permittivity distribution for a non-
magnetic cloak that hides an ideal metallic cylinder. Further-
more, the evolution of the optimized designs along with the
corresponding cloaking properties is investigated for increas-
ing number of incident angles, i.e., increased symmetry. The
presented methodology does not only apply for electromag-
netic waves, but can also be used for acoustic cloaks.

An infinitely long and ideal metallic cylinder is illumi-
nated by a uniform monochromatic wave propagating in free
space. Due to the invariance of the electromagnetic proper-
ties along the cylinder axis, the problem can be formulated in
a plane perpendicular to the cylinder axis. A first order ab-
sorbing boundary condition11 is used as an approximation to
the Sommerfeld radiation condition in order to truncate the
infinite domain. The ideal metallic cylinder can be described
as having a perfect electrically conducting �PEC� condition
at the interface to free space. Thus, the computational do-
main is given in two dimensions using three concentric
circles, as shown in Fig. 1. The inner, middle, and outer

domains represent the PEC cylinder, the cloak, and the sur-
roundings, respectively. The problem is governed by Max-
well’s equation in time-harmonic form, and the wave is
propagating in simple media. Hence, the presented problem
can be reformulated into a scalar Helmholtz equation for the
Ez-polarized wave. We choose to solve the problem using the
finite element method.11,12 A scattered-field formulation is
used in order to reduce the dispersion error. The uniform
incident field Ez

i is formulated as

Ez
i = E0e−jk0k·r, �1�

where E0 is the amplitude of the wave, j=�−1, k0 is the free
space wave number, k= �kx ,ky�T is the normalized directional
wave vector, and r= �x ,y�T is the spatial position vector. In a
scattered-field formulation the inhomogeneous Helmholtz
equation, the first order absorbing boundary condition11 in
free space, and the PEC boundary condition are, respectively,
formulated as

� · ��r
−1 � Ez

s� + k0
2�rEz

s = − k0
2��r − �r

−1�Ez
i , �2�

n · �Ez
s + jk0Ez

s = 0, �3�

Ez
s = − Ez

i , �4�

where Ez
s is the scattered field; �r and �r are the relative

permittivity and permeability, respectively; and n= �nx ,ny�T

a�Electronic mail: jban@mek.dtu.dk.
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FIG. 1. Computational domain. �a�–�e� show the design domains equipped
with one, two, three, four, and eight symmetry lines, respectively. The de-
sign domain with rotational symmetry is given in �f�.
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is the outward-pointing normal vector of the boundary. The
boundary between free space and the cloak is formulated by
a continuity condition. In the cloaking literature the bound-
ary between free space and the cloak is usually impedance
matched; however, recent studies13 have shown that a non-
magnetic cloak whose boundary to free space is not imped-
ance matched also may perform well.

The standard topology optimization approach using a
density method is implemented.10 The relative permeability
is set to 1 in order to mimic a nonmagnetic material; hence,
only the spatial distribution of the relative permittivity is
varied in the design process. The cloak domain wrapped
around the cylinder is defined as the design domain, in which
the relative permittivity can be varied continuously on an
element basis between 1 and 6. A design variable, �
� �0;1�, for each element is introduced as a relative element
material density in order to interpolate between free space
permittivity �r

min=1 and the upper bound on the permittivity
�r

max=6. Thus, the interpolation function is given as

�r = �r
min + ���r

max − �r
min� . �5�

In contrast to most topology optimization problems interme-
diate values of the permittivity in the final design are in this
problem both physically sound and realizable as graded in-
dex materials, which can be obtained based on varying dop-
ing profiles or by nanoperforation.9 A density filter14–16 is
introduced to aid realizations of the optimized designs by
enforcing a minimum length scale on the design. Addition-
ally a volume constraint is imposed.

In order to cloak the cylinder the objective is to mini-
mize the norm of the scattered field in the surroundings,

� =
1

�0
	

�out

Ez
sEz

sdr ,

where the overbar denotes the complex conjugate and �0 is
the norm of the scattered field in the outer domain when no
cloak is present. The reference value �0 is included in order
to make the objective dimensionless as well as easy to inter-
pret. When ��1, cloak and cylinder appear smaller than the
noncloaked cylinder. The gradient-based optimization rou-
tine, method of moving asymptotes,17 is applied to update
the design in an iterative approach. The sensitivities are ob-
tained using the adjoint method.18

Efficient optimization for multiple incident angles can be
performed by introducing symmetry constraints on the de-
sign. Symmetry lines divide the original design domain into
equally sized subdomains in a number corresponding to the
number of incident waves. As the number of angles goes to
infinity the design becomes rotationally symmetric as
sketched in Fig. 1.

Using the method outlined we have optimized for one,
two, three, four, eight, and infinitely many symmetry lines.
The results are shown in Fig. 2. When using one and up to
four symmetry lines the optimized designs cloak the metallic
cylinder nearly perfectly for the considered angles of inci-
dence. The optimized designs for one to four symmetry lines
are basically waveguides which guide and delay the waves
inside the cloak and phase match them to the waves outside.
The angle sweeps shown in Fig. 3 reveal that the cloaking
effect is highly localized to the considered angles of inci-
dence for these four designs. In order to make the cloak more

versatile to various angles of incidence, more symmetry lines
are added to the design domain at the cost of increased ob-
jective value as shown in Fig. 4.

A robust design for small perturbations in the angle of
incidence is obtained by illuminating with uniform waves
incident in an interval from �5° to 5° on the design domain
and cylinder. The optimization is formulated as a minimum-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (l)(k)

(m) (o)(n)

FIG. 2. �Color online� The cloak designs and FE simulations. �a�–�e� The
dielectric layout of the cloaks for one, two, three, four, and eight symmetry
lines, respectively. �f� The rotational symmetric design. The gray scale in-
dicates the optimized relative permittivity distribution that ranges between 1
and 6. �j�–�o� The corresponding total electric fields. �g�–�i� The incident,
scattered, and total electric fields without any cloak wrapped around the
PEC cylinder.

FIG. 3. �Color online� Sweep over the angle of incidence from −	 /2 to
	 /2.
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maximum problem, i.e., the load case which yields the high-
est scattering in each iteration step is minimized. The result-
ing cloak is shown in Fig. 5�b�, and the angle sweep in Fig.
5�a� clearly shows that the cloak can be operated in a broader

incident angle interval at the cost of increased scattering.
In conclusion we have outlined a method of designing

cloaks that can be realized with readily available dielectric
materials. The evolution of topology optimized cloaks oper-
ating at various degrees of symmetry is presented. The analy-
sis reveals that near perfect cloaking can be achieved when
the cloaks are operating at up to four symmetric angles of
incidence. Even for the isotropic design, cloak and cylinder
appear smaller than the noncloaked cylinder. However, all
presented designs have a narrowband performance, where a
deviation in the frequency of less than 10% will result in
�
1. The method of designing cloaks can further be ex-
tended in several ways, e.g., by optimizing for wider fre-
quency ranges, radar cross sections, or directive properties.

This work was supported by the Eurohorcs/ESF Euro-
pean Young Investigator Award �EURYI� and by the Danish
Research Council for Technology and Production �Grant No.
274-06-0507.
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FIG. 4. The evolution of the cloak designs for increasing number of sym-
metry lines up to a rotational symmetric design. Remark that all designs
result in ��1, i.e., cloak and cylinder appear smaller than the noncloaked
cylinder.

(a)

(b) (c) (d)

FIG. 5. �Color online� Design, sweep, and finite element simulations of
wave incident in an interval from �5° to 5°. �a� Sweep through angle of
incidence for design optimized at 0° and in the interval, respectively. �b� The
dielectric layout for the cloak operating in the interval. ��c� and �d�� The
total electric fields for a wave at 0° and �5° incidence on the cloak from �b�,
respectively.
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Fully enclosing, all-dielectric cloaks working for both Ez and Hz polarizations simultaneously are

presented in this letter. The cloaks are effective for two antiparallel angles of incidence, and the

layout of standard dielectric material in the cloak is determined by topology optimization.

Scattering from cylinder and cloak is reduced for an Hz-polarized wave compared to an

Ez-polarized wave by taking advantage of the surface mode at the perfectly electric conducting

boundary. Perhaps contrary to simple intuition, fully enclosed, all-dielectric, low-contrast cloaks

cannot be designed effectively when distributing a material with lower permittivity than the

background material.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3691835]

The layout of the material parameters for cloaks that

manipulate electromagnetic waves to flow around an object

without any scattering can conveniently be found by analyti-

cal transformation optics approaches.1,2 However, the

required material parameters for fully enclosing or comple-

mentary medium-based3 cloaks are extreme in some regions

of the cloak. Typical realizations4 rely on resonances having

a narrow band and lossy response. Furthermore, sub-

wavelength artificial structuring is challenging for optical

frequencies. On the other hand, material parameters for all-

dielectric carpet cloaks5 need not to be extreme, thus circum-

venting the above challenges. Both two-dimensional (2D)

and recently three-dimensional (3D) macroscopic all-

dielectric carpet cloaks have been demonstrated (cf. Refs.

6–9). Here, we address the more challenging problem of

designing fully enclosing, all-dielectric cloaks.

Recent results10 show that gradient-based topology opti-

mization11 can be used to find the permittivity distribution

for a low-contrast, all-dielectric, fully enclosing optical cloak

that hides an ideal metallic cylinder for up to 4 symmetri-

cally distributed angles of incidence or for an incoming

angular interval, of 65. The study was based on distributing

material with a higher permittivity than the background ma-

terial (free space) and illuminating by an Ez-polarized wave.

In this letter, we present fully enclosing, all-dielectric cloaks

effective for both Ez and Hz polarizations simultaneously.

Furthermore, we study the cloaking effect of distributing ma-

terial with either higher or lower permittivity than the back-

ground material. The optimized designs for the former case

delay the waves in regions of higher permittivity than the

background and, subsequently, phase match them to the

waves outside. Intuitively, distributing dielectric material

having a lower permittivity than the background material

would result in cloaking performance on the same level or

better; however, this is not the case as we will show.

The numerical setup is identical to the previous study.10

The computational domain is given in 2D using 3 concentric

circles, see Fig. 1. The inner, middle, and outer domains rep-

resent the perfectly electric conducting (PEC) cylinder, the

cloak, and the surroundings, respectively. Assuming invari-

ance of the electromagnetic properties along the cylinder

axis, Maxwell’s equations simplify to the scalar Helmholtz

equation. The problem is solved using the finite-element

method (FEM).12,13 A scattered-field formulation with

Hz ¼ Hs
z þ Hi

z, where Hs
z and Hi

z are the scattered and inci-

dent fields, respectively, is used in order to reduce the disper-

sion error. For the incident field Hi
z, we consider plane wave

illumination and solve the wave equation

$ �
�
��1
r $Hz

�
þ k20lrHz ¼ 0; (1)

where �r is the relative permittivity, lr is the relative perme-

ability, and k0 is the free space wave number. The computa-

tional domain is truncated on the outer boundary CABS using

a first order absorbing boundary condition for the scattered

field n � ��1
r $Hs

z þ jk0
ffiffiffiffiffiffiffiffiffiffiffi
��1
r lr

p
Hs

z ¼ 0, where n is the

outward-pointing normal vector of the boundary and

j ¼ ffiffiffiffiffiffiffi�1
p

. Equivalent equations for the Ez polarization are

easily obtained by interchanging Hz $ Ez and lr $ �r.
We mimic a strongly scattering object by imposing a

PEC boundary condition, n � E¼ 0, at CPEC. For the Ez

polarization, this is equivalent to Ez ¼ 0 (no field on the

FIG. 1. (Color online) Schematics of a cylindrical cloak illuminated by ei-

ther an Ez- or an Hz-polarized uniform plane waves in a background permit-

tivity �BGr (either vacuum or a typical dielectric). In the design domain Xdes,

the permittivity �rðqÞ can be varied continuously on an element basis to cre-

ate the cloaking effect of a PEC cylinder (innermost region).a)Electronic mail: jban@mek.dtu.dk.
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boundary) while n�ð��1
r $HzÞ ¼ 0 for the Hz polarization (the

field is not necessarily zero, while the radial derivative is).

The latter case may support surface waves, and this differ-

ence will have an important effect on the performance of the

optimized cloaks.

We employ a standard density-based topology optimiza-

tion method11 and we restrict our investigations to non-

magnetic materials (lr ¼ 1). In the cloak domain wrapped

around the cylinder, the relative permittivity can be varied

continuously on an element basis between free space permit-

tivity �min
r ¼ 1 and an upper bound on the permittivity

�max
r ¼ 2, achievable with a broad range of naturally occur-

ring transparent dielectric materials. For each element, we

introduce a design variable, q 2 ½0; 1�, as a relative element

material density. Furthermore, we make a linear interpola-

tion of �rðqÞ so that

�rðqÞ ¼ �min
r þ qð�max

r � �min
r Þ: (2)

In this analysis, we test cloaks of either graded index material,

which permits intermediate values of the permittivity, or dis-

crete material designs, which do not. The graded or discrete

designs are achieved by introducing a density filter14,15 or a

Heaviside projection filter16 with a robust formulation,17

respectively. The permittivity of the background material,

�BGr , is set to either 1 or 2, depending on whether we are dis-

tributing dielectric material having a higher or lower permit-

tivity than the background material, respectively. A volume

constraint is imposed along with symmetry constraints on the

design with two symmetry lines around which the 4 equally

sized sub-domains can be mirrored as shown in Fig. 1. Utiliz-

ing the symmetry lines, all cloaks are designed to be effective

for two antiparallel angles of incidence (0� and 180�).

In order to cloak the cylinder, the objective is to mini-

mize the norm of the scattered field in the surroundings,

U ¼ UE þ UH ¼ 1

WE

ð
Xout

jEs
zj2dr þ

1

WH

ð
Xout

jHs
z j2dr; (3)

where W is the norm of the scattered field in the outer do-

main when no cloak is present. This normalization makes

UE;H dimensionless and easy to interpret. If UE;H < 1, cloak

and cylinder produce less scattering than the non-cloaked

cylinder. The design is updated iteratively using the

gradient-based optimization routine method of moving

asymptotes (MMA).18 The sensitivities are obtained using

the adjoint method.19

Graded and discrete designs that minimize the scattering

from both Ez and Hz polarizations simultaneously are pre-

sented in Fig. 2 (leftmost panels). The total fields for Ez and

Hz polarizations are shown in the middle and rightmost pan-

els, respectively. The fields from the non-cloaked cylinders

for Ez and Hz polarizations with �BGr ¼ 1 are shown in Figs.

2(b) and 2(c) as a reference. In case of �BGr ¼ 1, the graded

design result in scattering less than 1% of the non-cloaked

cylinder and even for the more restrictive case with a dis-

crete design scattering is reduced to less than 5% for both

polarizations. The Hz polarization for the discrete design

yields less scattering than the Ez polarization, due to the less

restrictive boundary condition for the Hz polarization. Con-

trary to simple intuition, considerable scattering is produced

by all designs with �BGr ¼ 2. Graded designs with �BGr ¼ 2

produce more scattering than the discrete counter-parts;

hence, we have omitted graded designs and show only the

discrete design. To analyze the cause for the degeneration in

cloaking performance for designs with �BGr ¼ 2, we relax the

problem and investigate whether or not effective cloaks with

�BGr ¼ 2 can be designed individually for either the Ez or Hz

polarization.

The optimized cloaks and total fields for Ez and Hz

polarizations are shown in Figs. 3 and 4, respectively. Even

though we relax the problem and optimize individually for

either one or the other polarization, both the graded and

FIG. 2. (Color online) Polarization-independent cloak designs and the asso-

ciated objective values U [Eq. (3)] for Ez and Hz-polarized waves. The mid-

dle and rightmost panels show the total fields for Ez and Hz polarizations,

respectively. Panels (a)–(c) show total fields for scattering of the PEC cylin-

der itself. Panels (d)–(f) show graded cloak designs with �BGr ¼ 1, while

(g)–(i) show the discrete counterparts. Likewise, panels (j)–(l) show the dis-

crete design with �BGr ¼ 2. In the linear gray-scale plots, white and black

color correspond to �r ¼ 1 and �r ¼ 2, respectively.

FIG. 3. (Color online) Cloak designs and associated objective values U [Eq.

(3)] for Ez polarization. For a description of the individual panels, see cap-

tion of Figs. 2(d)–2(l).
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discrete designs with �BGr ¼ 2 result in poor cloaking per-

formance. We thereby see that the limited cloaking perform-

ance for designs with �BGr ¼ 2 is not caused by the

requirement on the cloaks to be effective for both polariza-

tions simultaneously. Instead, we conclude that it is a conse-

quence of optical modes tending to concentrate their

electric- or magnetic-field energy in regions of high dielec-

tric values.20 For the designs with �BGr ¼ 1, the field energy

is concentrated in regions of higher permittivity, wherein the

wave is delayed and subsequently phase matched to the

waves outside the cloak. For the designs with �BGr ¼ 2, we

can only design regions, which the field avoids. Hence, it is

possible to split the waves in front of the object with very

limited backscattering. However, the waves cannot be col-

lected on the backside of the object without scattering. For

the Hz polarization, a surface wave can exist on the PEC

boundary as mentioned previously. The scattering is reduced

by a factor of two for Hz polarization with �BGr ¼ 2 compared

with Ez polarization by coupling the wave into the surface

mode, which makes it easier for the wave to flow around the

object.

Finally, we address the radar cross section from back-

scattering to forward-scattering produced by either the indi-

vidually optimized discrete designs or the non-cloaked cylin-

ders (as reference), see Fig. 5. The radar cross section is

normalized by the radar cross section in the backscattering

direction from the non-cloaked cylinder for the Ez polariza-

tion. For �BGr ¼ 2, the backscattering of the designs are

reduced significantly and are on level with the designs for

�BGr ¼ 1. On the contrary, the radar cross section for �BGr ¼ 2

is comparable to that of the non-cloaked cylinders around

the forward scattering direction.

In conclusion, we have presented directional topology

optimized all-dielectric low-contrast cloaks that minimize

scattering for combined Ez and Hz polarized waves. Near-

perfect cloaking is achieved for the graded design with

�BGr ¼ 1 and even for a discrete design scattering for both

polarizations is reduced to less than 5% of that from the non-

cloaked cylinder. Furthermore, the effect of the background

material has been investigated. The results indicate that fully

enclosed, all-dielectric, low-contrast cloaks can be designed

effectively when distributing a material with higher permit-

tivity than the background material. However, contrary to

simple intuition this is not possible for the “inverse” case,

i.e., when distributing a material with lower permittivity than

the background material. The backscattering is reduced sig-

nificantly for all optimized designs. For an Hz-polarized

wave, the optimized designs can take advantage of the sur-

face mode at the PEC boundary and achieve less scattering

than the optimized designs for the Ez-polarized wave.
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FIG. 4. (Color online) Cloak designs and associated objective values U [Eq.

(3)] for Hz polarization. For a description of the individual panels, see cap-

tion of Figs. 2(d)–2(l).

FIG. 5. (Color online) Radar cross section from back-scattering (h ¼ 0) to

the forward-scattering (h ¼ p) for the discrete designs with a background

permittivity of �BGr ¼ 1 (dashed lines) or �BGr ¼ 2 (dotted lines) illuminated

by either an Ez or an Hz-polarized waves. Designs with �BGr ¼ 2 cause lim-

ited backscattering, but with significant forward scattering. For comparison,

results for the non-cloaked cylinder are also included (solid lines).
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Abstract

In this paper we present an alternative way of designing electromagnetic and acoustic cloaks based
on isotropic and non-extreme materials. Using the standard gradient-based topology optimization
method we vary the isotropic material properties within the cloak in an iterative approach, such that
the norm of the scattered (electric, magnetic or acoustic) field in the surroundings is minimized.
Both optimized graded-index designs and optimized designs based on circular inclusions in a back-
ground material are presented. For the specified angle of incidence the cloaking properties is shown
numerically to be nearly perfect in a limited frequency range.

1. Introduction

In order to hide a given object for a specific frequency range in the acoustic or electromagnetic spectrum
it is necessary to obtain the material properties of these so-called acoustic or electromagnetic cloaks and
be able to realize the properties. The material properties, for electromagnetic or acoustic cloaks can
be derived by a coordinate transformation in transformation optics [1] or transformation acoustics [2],
respectively. Several simplified electromagnetic cloaks have been realized (e.g. [3]) and all-dielectric
carpet cloaking has been demonstrated [4]. In the acoustic case realizations of the material properties
derived by transformation acoustics are more cumbersome due to the anisotropic mass density, which
is not common in naturally occurring materials. A recent realization, in which they make use of an
transmission line approach to overcome the above challenge, of an acoustic cloak in water waves for
ultrasound has been demonstrated [5]. All the theoretical work and realizations of electromagnetic and
acoustic cloaks are to the authors knowledge based on anisotropic material parameters, however, we
have in this work systematically addressed the intriguing question: How efficiently can we cloak when
using conventional simple isotropic media readily available in nature?. Results [6] show that gradient-
based topology optimization [7] can be used to find the permittivity distribution for a low-contrast all-
dielectric optical cloak that hides a perfectly electric conducting cylinder in a limited frequency range for
up to 4 symmetrical distributed angles of incidence. The physics of time-harmonic acoustic waves and
time-harmonic Ez- or Hz-polarized electromagnetic waves are governed by an identical mathematical
form; the scalar Helmholtz equation as shown below in equation (1). The differences in the Helmholtz
equation for acoustic, Ez- and Hz-polarized waves are found in the material properties and state variable;
mathematical the equations are the same form. Thus with a limited reformulation, the initial methodology
of designing optical cloaks can also be used to design an acoustic cloak with isotropic material properties
to circumvent the problems of the anisotropic mass density.
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Wave-type u A B

Ez-polarized Ez μ
−1
r εr

Hz-polarized Hz ε
−1
r μr

Acoustic p ρ
−1
r κ

−1
r

Tab. 1: Parameter relations for a general notation of Helmholtz’ equation.

2. Method

The scalar Helmholtz equation governs the physics of both an Ez-polarized, Hz-polarized and acoustic
wave and in a general form we can state this as

∇ · (A∇u
)
+ k

2
0Bu = 0 (1)

where A,B and u are given in Tab. 1, k0 = ω/c is the free space wave vector, ω is the angular frequency,
c = (ε0μ0)

−1/2 is the speed of light in vacuum for an electromagnetic wave or c = (ρ0κ
−1
0 )−1/2 is the

speed of sound in air for an acoustic wave, ε is the permittivity, μ is the permeability, ρ is the density, κ
is the bulk modulus, the subscripts r and 0 denotes the relative parameters to that of free space and air
for the electromagnetic and acoustic wave, respectively.
The problem is modeled in 2D using 3 concentric circles and solved using the finite element method
[8]. The inner, middle and outer domain represent the hidden cylinder, the cloak and the surroundings,
respectively. The material of the hidden cylinder is iron for the acoustic problem and a perfectly electric
conductor for the electromagnetic problem. Using the standard gradient-based topology optimization
method [7] we vary the isotropic material properties A and B within the cloak in an iterative approach,
such that the norm of the scattered (electric, magnetic or acoustic) field in the surroundings is minimized.
In case of the electromagnetic cloak we set the relative permeability to 1 in order to mimic a non-magnetic
material. Hence for the electromagnetic problem the relative permittivity, εr, is varied continuously on an
element basis between two materials using a linear interpolation and for the acoustic problem the relative
density, ρr, and the bulk modulus, κr, are varied. Without any penalization of intermediate material
properties a graded index material is obtained from the optimization. Hence the Material-Mask Overlay
Strategy (MMOS) [9] is be used in order to achieve designs without intermediate material properties.
Furthermore the shape of one material is confined to circles, which make the designs easier to realize. The
MMOS formulation results in an optimization problem, in which the position and radii of the prescribed
circles are varied.

3. Results

Using the method outlined we have optimized for an Ez-polarized and an acoustic wave. In Fig. 1 (a)
and (f) the non-cloaked cylinder illuminated by a uniform plane Ez-polarized and acoustic wave are
presented, respectively. The interference pattern from the scattered field is very notable, especially as a
shadow region behind the cylinders. For the Ez-polarized problem we interpolate the relative permittiv-
ity, εr, between 1 and 6 for the graded design in Fig. 1 (b). The design obtained from MMOS results
in circular inclusions with a relative permittivity of 3 in a background material of a relative permittivity
of 1 in Fig. 1 (d). The circular inclusions gives a layout of effective permittivity that mimics the graded
design. Both optimized designs for the Ez-polarized wave are basically waveguides which guide and
delay the waves inside the cloak and phase match them to the waves outside. For the acoustic problem
we interpolate the relative density, ρr, between 1 (air) and 6.54 ·103 (iron) and the relative bulk modulus,
κr, between 1 (air) and 1.20 · 106 (iron). The graded design with intermediate material properties and
resulting field is presented in Fig. 1 (g) and (h), respectively. A physical interpretation of the graded
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Fig. 1: The cloak designs and FE simulations for an Ez polarized wave (a)-(e) and an acoustic wave
(f)-(j). (a) and (f) show the non-cloaked cylinders. (b), (c), (g) and (h) show the graded designs and
resulting fields. (d), (e), (i) and (j) show the designs obtained using MMOS and resulting fields.

design for the acoustic problem with a linear interpolation between air and iron is not straight-forward,
but included here as a reference. Using MMOS a design containing iron-rods of varying radii and posi-
tion are obtained and presented in Fig. 1 (i) with the resulting field shown in Fig. 1 (j). However, the
presented designs for both the electromagnetic and the acoustic problem are both highly resonant to the
frequency and highly localized to the considered angle of incidence. Hence a perturbation in either the
frequency or angle of incidence have a negative effect on the cloaking properties of the designs.

4. Conclusion

We have numerically demonstrated that topology optimization can be used to find the layout of isotropic
material in both electromagnetic and acoustic cloaks. Both optimized graded-index designs and opti-
mized designs based on circular inclusions in a background material are presented. For the specified
angle of incidence the cloaking properties is nearly perfect in a limited frequency range. The method of
designing cloaks can further be extended in several ways, e.g. by optimizing for wider frequency ranges,
radar cross sections or directive properties.
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We demonstrate that an annular Bragg grating cloak made of non-absorbing, isotropic, standard
dielectric materials, readily available in nature, efficiently can eliminate the backscattering from
strongly scattering cylindrical objects illuminated by plane waves. The backscattering reduction
improves with increasing number of rings and/or increased permittivity contrast. Numerical results
indicate that the position and thickness of the Bragg rings converge to those of a conventional
annular quarter-wavelength Bragg grating when the size of the cylinder becomes much larger than
the wavelength.

Backscattering from hard obstacles illuminated by
electromagnetic waves can be reduced either by ab-
sorbing materials or by cloaking approaches that de-
flect waves around objects making them invisible to
the observer[1–3]. Examples of absorbers are Dallen-
bach layers, Salisbury Screens[4] and Jaumann Layers.
Dallenbach layers use the bulk material for absorption,
whereas Salisbury Screens and Jaumann Layers use re-
sistive sheets placed a multiple of a quarter wavelength
from a plane surface. For curved and cylindrically shaped
objects a degeneration in performance of both Salis-
bury Screens[5] and Jaumann absorbers[6, 7] has been
reported. Material layouts for cloaks that manipulate
electromagnetic waves to flow around an object without
any scattering can conveniently be found with the aid
of analytical transformation optics[1–3]. The required
material parameters are extreme in some regions of the
cloak, which makes realizations challenging. A relaxed
form of the cloaking problem that does not involve sin-
gularities is the carpet cloak[8]. The carpet cloak does
not need extreme material parameters and hence realiza-
tions of micro- and macroscopic carpet cloaks at optical
frequencies have been demonstrated using all-dielectric
structures, see e.g. Refs. 9–11.
Here we relax the original cloaking problem by only

requiring elimination of backscattering in a limited an-
gular range. Although relaxed the cloaking problem is
highly relevant in e.g. radar-setups where source and de-
tector are coincident. As it turns out, this relaxation
results in readily realizable omnidirectional backscatter-
ing cloaks made of isotropic, low-contrast, non-absorbing,
all-dielectric materials readily available in nature. The
idea comes from a systematic numerical optimization ap-
proach followed by extensive analytical and numerical
studies.
Assuming invariance of the electromagnetic properties

along the cylinder axis, Maxwell’s equations simplify to
the scalar Helmholtz equation which for Ez polarized
waves is given by

∇ · (μ−1

r
∇Ez

)
+ k

2

0
εrEz = 0 (1)

∗jban@mek.dtu.dk

where εr is the relative permittivity, μr the relative per-
meability, and k0 the free space wave number. We mimic
the strongly scattering object as a cylindrical obstacle
with perfect electric conducting (PEC) boundary condi-
tions. The PEC cylinder is illuminated by a plane wave
propagating in free space (εr = μr = 1). This setup
is almost identical to the setup in Ref. 12 which demon-
strates how gradient-based topology optimization[13] can
be used to find the permittivity distribution for a low-
contrast, all-dielectric, fully enclosing optical cloak that
hides a PEC cylinder for discrete angles of incidence.
Here, we use the same optimization approach to in-
vestigate the possibilities of designing omnidirectional
backscattering cloaks by minimizing the norm of the scat-
tered field in a circular trapezoidal domain enclosed at ±
10o from the backscattering direction and with inner and
outer radii given as 1.75 and 5 free space wavelengths
from the obstacle, respectively (see Ωout in Fig. 1(a)).
In principle, the algorithm allows for free (but circular
symmetric) distribution of material properties belonging
to the interval εr ∈ [1, 2], however the obtained solutions
are almost ”discrete” in the sense that the optimizer se-
lects material properties at the upper or lower bounds
with just small areas of intermediate values. To enforce
fully discrete designs we artificially penalize intermediate
material values.
The results of the optimization process are surprisingly

simple annular Bragg gratings with layer dimensions that
depend on the obstacle radius RPEC and rings with dis-
tances close to but not equal to the quarter-wavelength.
Fig. 1(a) shows a topology optimized design for a ra-
dius to free space wavelength ratio of RPEC/λ = 0.8
with the resulting total field shown in Fig. 1(b). The
structure consists of a thin coating of the obstacle sur-
rounded by three concentric rings. A slightly increased
cylinder radius (RPEC/λ = 0.83) almost eliminates the
inner coating layer (Figs. 1(c) and (d)) and slightly shifts
the positions of the 3 concentric rings inwards. Topology
optimized designs for other RPEC/λ ratios show similar
layered patterns with varying thickness of the inner coat-
ing layer. An amplification of the total field in the layered
region is observed for all optimized designs as indicated
in Fig. 1(i). The optimized structure acts as an annu-
lar Bragg grating with a defect introduced by the PEC
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FIG. 1. (a), (c): Topology optimized designs for RPEC/λ
ratios of 0.8 and 0.83, respectively, and total fields (b), (d)
calculated by finite element analysis. (e): The positions of
layers with εr = 2 are represented by 7 parameters for a 3
layer structure. (f) Total field for RPEC/λ = 0.82 obtained
by the analytic solution. (g) The incident wave couples to
circumferentially propagating ring modes that lead the energy
around the obstacle. (h) Amplification of the field due to the
annular Bragg grating, where the PEC cylinder acts as an
annular defect.

cylinder[14]. For a flat obstacle the incoming wave would
simply be reflected, however, due to the curvature of the
grating, the incoming wave couples to circumferentially
propagating and confined ring modes[14] that lead the
energy around the obstacle (c.f. Fig. 1g+h), resulting in
scattering in all but the backscattering direction.

Multilayered concentric cylinders, composed of differ-
ent dielectric materials, intended for other purposes have
been treated analytically[15–17] in a cylindrical coordi-
nate system (ρ,θ). The analytic solution to the scattered
field, Es

z
, in the outer region is given as

E
s

z
(ρ, θ) = E0

∞∑
n=−∞

j
n
AnH

(1)

n
(k1ρ)e

jnθ (2)
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FIG. 2. Optimized positions of 3 rings illuminated by an
Ez-polarized plane wave and the cloaking performance for
0.2 ≤ RPEC/λ ≤ 3.0. Optimized radial dimensions of the
layers with εr = 2 indicated by grey bands and confined by
inner radii (red) and outer radii (blue) are measured by the
left axis. Optimized

cloaking performances for εr = 2 (green crosses) and εr = 4
(green squares) are measured by the right axis.

where j =
√−1, E0 = 1 is the normalized amplitude of

the incident plane wave, H
(1)

n are the Hankel functions
of the first kind, k1 is the wave number in the outer re-
gion and An are the unknown coefficients, which can be
determined from the boundary conditions. Apart from
the PEC boundary condition at the innermost bound-
ary, two independent continuous boundary conditions
and two sets of unknown coefficients are introduced for
each boundary yielding a linear equation system to be
solved. We solve it directly, however Richmond’s re-
cursive method[18] could have been used as well. The
total field obtained from the analytic solution with the
extracted positions of the layers from the topology opti-
mized design for RPEC/λ = 0.83 is shown in Fig. 1(f)
and shows almost perfect agreement with the finite ele-
ment solution (c.f. Fig. 1(d)).

From the topology optimized designs (Fig. 1a+b) we
see that the layered design should start with a high index
(εr = 2) layer as the innermost ring (coating) and alter-
nate between free-space and high index material. Based
on this interpretation, the topology of the rings can be
parameterized as shown in Fig. 1(e). The outer radius
of the coating layer is given by r0 and ring n is parame-
terized by its center radius rn and its thickness tn. To-
gether with the analytical solution from Eq. (2), these
parameters are used as inputs to a simpler optimization
procedure based on the fmincon function in Matlab. In-
stead of minimizing the norm of the scattered field in a
domain just next to the cloak we now minimize the norm
of the field on a ±10o arc line Γout, in the far-field of the
backscattering direction. This allows some scattering to
occur in the near-field of the cloak, but minimizes scat-
tering in the far-field. The far-field is here defined as 60
wavelengths from the center of the PEC cylinder. Given
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the analytic solution to the scattered field from Eq. (2)
the objective to be minimized is formulated as

Φ =
1

W

∫
10

o

−10o

|Es

z
(ρ = 60λ, θ)|2dθ (3)

where W is the norm of the scattered field on Γout for
the non-cloaked PEC cylinder. When Φ is less than unity
backscattering from the layered cylinder is less than the
backscattering from the non-cloaked cylinder.

Optimized radial dimensions of the grating layers are
indicated by grey bands confined by inner radii (red) and
outer radii (blue) in Fig. 2 for three-grating-layer struc-
tures and varying obstacle diameter. The corresponding
cloaking performance Φ as defined by Eq. (3) is indi-
cated by green crosses. The varying width of the inner
coating layer is observed here as well. The radii vary less
for large RPEC/λ ratios and the cloaking performance
converges asymptotically to 1 (i.e. no cloaking). The
results show that good cloaking performance (Φ < 0.01)
for 3 rings is achieved when RPEC/λ < 1.3, however for
larger ratios the cloaking performance deteriorates. Bet-
ter performance can be achieved by doubling the permit-
tivity and reoptimizing the positions and thicknesses of
the rings. The cloaking performance of the optimized de-
signs for εr = 4 is presented by green squares in Fig. 2 and
shows a significant improvement compared to the results
for εr = 2. The higher permittivity makes it possible to
achieve both a higher amplification and a higher confine-
ment of the ring modes, such that backscattering can be
reduced more efficiently. It should be noted that all the
shown results are optimized for a specific RPEC/λ ratio
(one frequency). Hence the cloaking performance will de-
teriorate for all other frequencies than the one optimized
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FIG. 4. Total field (a) for an optimized 6-ring cloak (εr = 4,
RPEC/λ = 10) illuminated by an Ez-polarized wave. Norms
of the scattered field are given in a log

10
-scale for the non-

cloaked (b) and the cloaked PEC cylinder (c). Even if illu-
minated by an Hz-polarized plane wave (d) the Ez-optimized
cloak shows good backscattering performance.

for. A remedy could be to optimize for a wider frequency
range at the cost of reduced cloaking efficiency but this
idea is not further pursued here.

Increasing the number of rings is another intuitive
way of improving the cloaking performance and this is
illustrated in Fig. 3 for 3.0 ≤ RPEC/λ ≤ 10.0. Here the
permittivity is fixed to 2, however, the number of rings
is doubled to 6. The positions, represented by the gray-
shaded areas, of the 6 rings and the coating radius are
optimized with the outlined method. At RPEC/λ = 3.0
the norm of the scattered field for 3 position-optimized
rings is only reduced to 0.32 (see Fig. 2) compared to
the non-cloaked cylinder, whereas it has been reduced to
5.3 · 10−5 for 6 rings (see green circles in Fig. 3).
We have tried to identify a simple rule for the optimal

dimensions of the cloak. However, the problem is more
complicated than for simple annular Bragg resonators[19]
due to the coupling of the incoming wave to the cir-
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cumferential waves. The semi-periodic variation of the
radius of the inner coating is attributed to the opti-
mized structure adapting itself to new ringmodes that
enable the confinement. Since the effective circumferen-
tial index is hard to compute we do not believe that it
is possible to define a closed-form rule for the optimal
dimensions of the cloak. Nevertheless, we compare our
optimized results with a simple quarter-wavelength an-
nular Bragg grating cloak and find fairly good response
- especially for larger obstacle radii. The dashed red
and blue lines in Fig. 3 indicate the boundaries for a
conventional constant-period, quarter-wavelength annu-
lar Bragg grating designed with periodic pairs of layers
with thickness di = λ/4ni (where ni is the refractive in-
dex of layer i), starting with high index material in the
innermost layer (coating). The cloaking performances for
regular Bragg gratings composed of 3 and 6 high index
rings are indicated by thick and thin curves, respectively
(Fig. 3). When the radius of the PEC cylinder becomes
much larger than the wavelength, both the layout and the
cloaking performance for the optimized 6-ring structure
converge to those of the corresponding simple annular
Bragg grating with 6 equidistant rings.

Fig. 4(a) shows the total field for an optimized 6-ring
structure (εr = 4) illuminated by an Ez-polarized wave.
Figs. 4(b) and (c) show the norms |Es

z
|2 of the scattered

field for the non-cloaked cylinder and the optimized 6-
layer structure, respectively. Even though the radius of
the PEC cylinder is 10 times the wavelength the norm
of the scattered field in the backscattering direction is
less than 2% of the norm of the scattered field from the
non-cloaked cylinder.

The outlined optimization procedure can equivalently
be used in the Hz-polarized case. However, it turns out
that the optimized structures for this polarization con-
verge to those of the Ez-polarization case for large cylin-
der radii (RPEC > 10λ) and hence also towards the sim-
ple quarter-wavelength Bragg grating. Hence, the cloak
optimized for an Ez-polarized wave is also very efficient
when illuminated by a Hz-polarized wave as shown in
Fig. 4(c).
The angle interval (±10o) is chosen somewhat arbi-

trarily. If the requirement to the size of the angle inter-
val is relaxed, one can get even better cloaking perfor-
mance in the smaller angular interval. The radar cross
section for the non-cloaked cylinder (solid red) and the
optimized 6-layer structure (solid blue) from Fig. 4 for an
Ez-polarized wave are presented in Fig. 5. The 6-layer
structure from Fig. 4 minimizes the norm of the scattered
field in the angle interval ±10o, however, minimizing the
norm in the reduced angle interval ±2o results in a sig-
nificantly stronger reduction of the backscattering in the
reduced angular range.
In conclusion, we have shown that the backscattering

from a PEC cylinder illuminated by a plane wave can be
minimized by wrapping the cylinder in a cloak composed
of annular rings made of non-absorbing, low-contrast, di-
electric material readily available in nature. This con-
cepts constitutes a new application for annular Bragg
gratings, which amplify and couples the incoming field
into confined ring-modes, which lead the wave around the
obstacle hence reducing backscattering. Cloaking perfor-
mance can be improved by increasing the number of rings
wrapped around the PEC cylinder and/or increasing the
permittivity of the high index material. For small ob-
stacle to wavelength ratios the cloak must be optimized
independently for Ez and Hz-polarized waves, however,
for larger ratios (i.e. RPEC/λ > 10), optimized struc-
tures converge towards simple quarter-wavelength annu-
lar Bragg gratings. Due to the polarization independence
for larger obstacles we predict that the concept is ex-
tendable to the backscattering minimization of 3D coated
spheres as well.
Finally, it is worthwhile emphasizing that the pro-

posed annular structure is different from the onion-ring
cloaks previously proposed in the literature (cf. Refs. 20
and 21) since these are not directly manufacturable
from standard available materials but require special tai-
lored anisotropic micro structures with periodicity much
smaller than the wavelength of the incoming wave and
abnormal material parameters less than unity. Along the
same line of thought it should also be noted that the pro-
posed annular Bragg structure cannot be found using a
transformation optics approach since it relies on struc-
tural details at the same scale as the incoming waves.
Apart from minimizing the backscattering from

smaller objects the findings of this paper may be of in-
terest for other design problems where scattering by par-
ticles is involved, such as design of solar panels, color
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coatings and sun screens.
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We propose a methodology for a systematic design of grating couplers for efficient excitation of surface plas-
mons at metal–dielectric interfaces. The methodology is based on a two-dimensional topology optimization for-
mulation based on the H-polarized scalar Helmholtz equation and finite-element method simulations. The ef-
ficiency of the method is demonstrated by optimized designs for input and output grating couplers for an
Ag-SiO2 interface. The results indicate that slanted grove gratings may raise the coupling efficiency above 68%
where the highest previously reported value was 50%. © 2010 Optical Society of America
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1. INTRODUCTION
Surface plasmons are electromagnetic waves trapped at
the interface between a metal with a negative real part
and a dielectric with a positive real part of the permittiv-
ity [1]. Surface plasmonic effects may be used in the real-
ization of pure photonic circuits which potentially will be
much faster than electronic circuits, in the lighting indus-
tries for light-emitting diodes or organic light-emitting di-
odes [2,3] and in solar cells [4]. Common for all applica-
tions is the problem of efficient coupling of light into the
surface plasmon or vice versa. For more detailed over-
views of surface plasmonic effects see [5,6].

Surface plasmons can be excited by electrons or pho-
tons. In this work we use photons in the form of a light
beam directed toward the interface between a dielectric
material and a metal. The incoming photons are scattered
and transfer momentum to the nearly free electrons of the
metals. With the right coupling, the nearly free electrons
of the conductor will collectively oscillate in resonance
with the incoming beam. This causes the light to be
trapped at the interface and form a plasma oscillation in
the optical frequency range. Figure 1 shows the theoreti-
cally predicted electromagnetic field for a surface plas-
mon. The nearly free electrons oscillate in resonance with
the incoming light and the “+” and “�” regions represent
regions with low and high surface charge densities, re-
spectively. The magnitude of the electric field E is higher
in the dielectric than in the metal due to the energy dis-
sipation in the metal. The electric field oscillates in the
�x ,y�-plane making the surface plasmons transverse mag-
netic in character; hence the magnetic field Hz is given in
the z-direction.

Efficient coupling of light into the interface is crucial.
Common methods for coupling light into a surface plas-
mon are based on prism couplers (e.g., Kretschmann and
Otto configuration) or grating couplers [1]. On small

scales the use of a prism is impractical, which motivates
the use of grating couplers. A grating coupler comprises a
topology that enables a wave vector match between the
incident light and the surface plasmon, without the use of
a prism. The topology of these grating couplers can be de-
signed in many ways and the design has a big influence
on the efficiency of the coupling. This leads to the use of
optimization techniques for finding the most optimal de-
sign. Three decades ago Tamir and Peng [7] performed
analytical as well as simple numerical studies on the ef-
fect of different groove designs on the coupling efficiency.
Other contributions have been presented in [8–10], and
lately Lu et al. [11] performed a systematic optimization
of coupling into a surface plasmon. Using a hierarchal
search optimization algorithm, varying the width and po-
sition of 14 grooves the authors achieved an excitation ef-
ficiency of 50%, which is the highest efficiency reported in
the literature for a grating coupler. In the present paper
we extend the work of Lu et al. [11] to allow free shapes
and topologies of the groves and we study not only the
case of coupling into the plasmon but also the coupling of
light from the plasmon into the dielectric surroundings.
By increasing the design freedom using the topology opti-
mization method we manage to improve the coupling effi-
ciency from 50% reported by Lu et al. [11] to more than
68% which is obtained for a coupling topology with
slanted groves.

Topology optimization is a computational tool that op-
timizes material distribution for a given objective func-
tion with geometrical and/or physical constraints [12].
The concept was introduced more than two decades ago in
[13] for structural mechanics, but the method has later
been used to tailor new materials or mechanisms in vari-
ous fields of engineering such as fluid dynamics (e.g.,
[14]), micro-electro-mechanical systems (e.g., [15]), photo-
nics (e.g., [16]), and multiphysics problems (e.g., [17]). Us-
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ing topology optimization it is possible to find solutions
that are not easily found by intuition, such as materials
with negative Poisson’s ratio [18] and negative thermal
expansion coefficient [19]. Thus topology optimization is a
suitable method to use in order to design grating couplers
for the efficient excitation of surface plasmons.

The layout of the paper is as follows. Section 2 summa-
rizes the theory behind modeling topology optimization of
surface plasmonic problems. Optimized designs of grating
couplers are presented in Section 3 and conclusions are
given in Section 4.

2. TOPOLOGY OPTIMIZATION OF TWO-
DIMENSIONAL SURFACE PLASMON
GRATING COUPLERS
The implementation of the two-dimensional topology op-
timization problem is based on the finite-element method
using a combination of the commercial programs COM-
SOL 3.4 and MATLAB 7.5.0 (R2007b). We use the mate-
rial and geometry settings from [11]. The computational
models for the input and output couplers are presented in
Figs. 2(a) and 2(b), respectively. Both models consist of a
SiO2-domain, �SiO2

; an Ag-domain, �Ag; and a design do-
main, �des, where SiO and Ag shall be distributed freely.
The design domain �des has a width and height of 2.5 �m
and 50 nm, respectively. For the input coupler a time-
harmonic wave is excited at �inp with a free-space wave-
length of 476 nm. The wave is Gaussian shaped with a

full width at half-maximum �FWHM�=1 �m and has an
incident angle of 45°. For the output grating coupler the
surface plasmon is excited at �inp with an exponentially
shaped electromagnetic wave matching the skin depth.
For both cases, the permittivities of SiO2 and Ag corre-
sponding to the given wavelength are �r=2.25 and �r
=−7.06− i0.27, respectively, and the permeability is as-
sumed to be �r=1 for both materials. For the input cou-
pler the incident beam will induce a surface plasmon at
the Ag-SiO2 interface when the wave vectors match due
to the grating coupler and vice versa for the output cou-
pler. The power flux of the surface plasmon is measured
using the averaged Poynting vector in the domain �out.
Reflections from the boundaries are eliminated using per-
fectly matched layers (PMLs) [20]. Furthermore, absorb-
ing boundary conditions �abs have been introduced on all
outer boundaries.

A. Governing Equation
The wave propagation problem is governed by the
H-polarized scalar Helmholtz equation,

� · ��r
−1 � Hz�r�� + k0

2Hz�r� = 0 in �, �1�

�

�x
 sy

sx
�r

−1
�Hz�r�

�x � +
�

�y
 sx

sy
�r

−1
�Hz�r�

�y � + sxsyk0
2Hz�r�

= 0 in �PML, �2�

where k0=� /c is the free-space wave number, � is the an-
gular frequency, c is the speed of light in vacuum, Hz�r� is
the unknown magnetic field in the plane r= �x ,y�, and sx
and sy are complex functions of the position and govern
the damping properties of the PML.

The boundary conditions are specified for both prob-
lems as

n · ��r
−1 � Hz�r�� = 0 on �con, �3�

n · ��r
−1 � Hz�r�� + ik0��r

−1Hz = 0 on �abs, �4�

where i=�−1 and n is the outward-pointing normal vec-
tor. The boundary condition for the input coupler with the
Gaussian shaped beam is

n · ��r
−1 � Hz�r��

= ik0��r
−1�2 exp−

�x − x0�2

2
 1

�2
�2�H0 − Hz� on �inp,

�5�

where x0 is the x-coordinate at the center of �inp, 

=FWHM/ �2�2 log 2�, and H0 is the incident magnetic
field amplitude. For the output coupler the boundary con-
dition is modeled with an exponentially shaped field, us-
ing knowledge of the skin depth and the vertical wave
vector ky,Ag in the silver,

+− + −
Metal

+ +− − +

Dielectric

− −

Ey

Hz
z

x

Fig. 1. A surface plasmon induced in the interface between a
metal and a dielectric. + and � signs represent regions with low
and high surface charge densities, respectively. The electric field
E oscillates in the �x ,y�-plane making the surface plasmons
transverse magnetic in character (hence magnetic field Hz in the
z-direction).
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Fig. 2. Computational models for the input and output couplers
containing a dielectric ��SiO2

�, a metal ��Ag�, and a design do-
main ��des�. A plane wave is excited at �inp. A surface plasmon
will be induced in the interface between the two media and the
energy flux is measured in the domain �out. To avoid reflections
from the boundaries, PML domains ��PML� and absorbing bound-
ary condition �abs have been introduced. All interior boundaries
have continuous boundary condition.

Andkjær et al. Vol. 27, No. 9 /September 2010 /J. Opt. Soc. Am. B 1829



n · ��r
−1 � Hz�r�� = ik0��r

−1�2 exp�− �ky,Ag��y0 − y��H0

− Hz� on �inp, �6�

where ky,Ag is found analytically to be 13.5�106 m−1 and
y0 is the y-coordinate of the interface.

B. Design Variables, Material Interpolation, and Design
Field
Following the standard topology optimization approach,
the material distribution in the design domain �des can be
changed by varying the permittivity of individual finite
elements continuously between the material values for
SiO2 and Ag. The design variables are relative element
material densities �e� �0;1�, where �e=0 corresponds to
Ag and �e=1 corresponds to SiO2. The following interpo-
lation models the relation between element densities and
element permittivities:

�r��e� = �Ag� + �e��SiO2
� − �Ag� � − i��Ag� + �e��SiO2

� − �Ag� ��

+ i4d��e
2 − �e�, �7�

where � and �, respectively, denote the real and the
imaginary parts of the permittivity for the given material
and d is a factor introducing artificial damping. This
damping induces an energy loss for intermediate values
of � and disfavors non-discrete (0/1) values in the final de-
sign [21]. Remark that the continuous design variables
are introduced in order to be able to use efficient gradient-
based math-programming methods for solving the optimi-
zation problem, in turn assuring convergence within a
couple of hundred finite-element analyses.

To ensure manufacturable and mesh independent de-
signs we use image processing-based filtering techniques.
An overview of different filtering techniques is presented
in [22] but in this work we use the latest Guest filter [23]
which ensures a minimum length scale for both the silica
and the silver phases. This means that regions with silica
or silver cannot become smaller than the chosen filter
size. Thus the designs can be tailored to meet manufac-
turing criteria. We denote the filtered design variables by
�̃e.

C. Objective Function and Optimization Problem
The goal of the optimization problem is to maximize the
averaged Poynting vector (power flow) in �out in the nega-
tive direction of the x-axis, n= �−1,0�, for the input cou-
pler and in the beam direction, n= �−�2/2,�2/2�, for the
output coupler. The gradient-based optimization routine
method of moving asymptotes (MMA) [24] is applied to
update the design variables in an iterative approach until
convergence. A volume constraint is added to the optimi-
zation problem, not because we want to limit the usage of
one material, but to avoid excess islands of material and
ensure a cleaner final design. Thus the optimization prob-
lem is formulated as

max
�

��Hz��̃�� = Pout =	
�out

1

2Lx�0�
R�i�r

−1Hz
� � Hz� · ndr,

s. t. Helmholtz equation �8�

Boundary conditions

1

V�des

	
�des

�̃�r�dr − � � 0, 0 � ��r� � 1,

where � denotes complex conjugate, Pout is the averaged
power flow through �out, Lx is the width of �out, n gives
the direction of the power flux, R� � is the real part, V�des
is the total volume of �des, and � is the maximum allowed
volume fraction of SiO2.

D. Efficiency
The decay length of the surface plasmon and its skin
depth in the two materials are used to evaluate the power
flux of the surface plasmon perpendicular to the interface
at the first groove of the grating. The electric field of the
surface plasmon along the interface decreases with the
distance �x� to the grating as exp�−2kx,SP� �x��, where kx,SP� is
the imaginary part of the surface plasmon wave vector
along the interface and can be derived analytically to
kx,SP� =214.6�103 m−1 for this problem. At the decay
length, �SP=2.33�10−6 m, the electric field has decreased
by a factor of exp�−1�. Thus the horizontal center of the
output domain �out is positioned exactly at the decay
length of the surface plasmon, and hence Pout should be
divided by the factor exp�−1� in order to find the power
flow at the first groove of the grating. Likewise the elec-
tric field of the surface plasmon normal to the interface
decays with the distance �y� as exp�−�ky��y��, where ky is
the real part of the surface plasmon wave vector perpen-
dicular to the interface. The wave vector is dependent on
the material in which it propagates; thus the wave vec-
tors are analytically found to be ky,Ag=42.5�106 m−1 and
ky,SiO2

=13.5�106 m−1, and thus the skin depths become
�Ag=23.5�10−9 m and �SiO2

=73.9�10−9 m. The height of
the output domain �out is set to the skin depth in the two
materials, and thus the power flow through an infinite
line perpendicular to the interface can be found as
Pout/ �1−exp�−1��. For the input coupler the efficiency of
the coupling is found as the power flux of the surface plas-
mon at the first groove of the grating divided by the power
flux at the input boundary �inp,

Efficiency =
Pout

exp�− 1��1 − exp�− 1��Pinp
. �9�

To avoid reflections from the incident beam on the silver
surface, the power flow at the input, Pinp, boundary is
found when all domains are set to silica.

In the reverse case (output coupler) the efficiency is
found as the power flow through the line parallel to the
output domain �out divided by the power flux of the sur-
face plasmon at the first groove of the grating. In order to
find the power flow of the surface plasmon at the first
grating, we use the power flow at the input boundary and
the distance LSP from the boundary to the first grating to
calculate the decrease in the electric field due to energy
dissipation along the interface,

Efficiency =
Pout

exp�− 2kx,SP� LSP�Pinp
, �10�

where Pinp and Pout are evaluated at �inp and �out, respec-
tively.
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E. Discretization
The modeling problem is solved using the finite-element
method; thus the discretized set of equations can be writ-
ten in the form

S���u = f, �11�

where S��� is the system matrix (which directly depends
on the density variables), u is the state field, and f is the
load vector. The design domain �des is discretized using
500.000 bi-linear quadrilateral elements and the rest of
the domains are discretized using triangular linear ele-
ments with a maximum length of 25 nm. This yields a to-
tal of 680.842 elements in the input coupler case and
696.172 elements in the output coupler case, and the de-
sign elements have a side length of 0.5 nm. This rather
fine resolution is not strictly required from convergence
considerations; however, we have chosen this fine discreti-
zation in order to be able to reproduce the grating coupler
from [11] using a regular element division. The state field
u is given by continuous elements, whereas the design
field is modeled using piecewise constant elements in or-
der to obtain sharp material boundaries at interfaces.

F. Sensitivity Analysis
The adjoint method is used in order to find the sensitivi-
ties for the gradient-based optimization algorithm, MMA.
The sensitivities for a discretized problem in the form of
Eq. (11) with the objective function � are given in [21] as

d�

d�̃e
=

��

� �̃e
+ 2R��T
 �S

� �̃e
u −

�f

� �̃e
�� , �12�

where the adjoint vector � is obtained from the solution of
the adjoint problem

ST� = −
��

�u
. �13�

The rightmost term of Eq. (12) is zero due to the design
domain not being a part of the output domain. The terms
�S /��̃e and �f /��̃e are known as part of the direct solution
of Eq. (11). For the present finite-element problem the
system matrix S is symmetric and hence the solution of
the adjoint problem in Eq. (13) can be performed very ef-
ficiently by the reuse of the factorization of S computed
for the direct analysis stated in Eq. (11). To summarize,
this means that the computational costs associated with
obtaining the sensitivities is ignorable compared to the
solution of the original problem in Eq. (11). For simplifi-
cation we use the notation A=1/ �2Lx�0��R�i�r

−1u��u� ·n.
Thus the derivatives with respect to the state variables,
�� /�u, can then be found by the chain rule to be

��

�u
=	

�out


 �A

�u
+

�A

��u
· ��dr, �14�

where

�A

�u
=

− 1

4Lx�0�
i�r

�−1 � u� · n, �15�

�A

��u
=

1

4Lx�0�
i�r

−1u�n. �16�

G. Algorithm
The overall optimization algorithm is described in a sim-
plified pseudocode in [22]. We stop the optimization when
the maximum difference of the densities in two iterations
is less than 1% or 1000 iterations are reached. The regu-
larization filter [23] will lead to designs with a small tran-
sition area of intermediate densities. Such designs are
non-realizable; hence all densities lower than 0.9 are set
to zero and the rest of the densities are set to 1 after con-
vergence, in order to obtain discrete (0/1) designs. This
step also ensures that the artificial damping, introduced
in Eq. (7), does not contribute to the final computation of
the problem in order to get the final efficiency.

3. RESULTS
We use an initial guess of pure silver in the design do-
main �des, which is shown in Fig. 3(a) with length scales.
For both input and output coupler cases we impose a vol-
ume fraction constraint on the silica of 0.3 and the mini-
mum length scales are set to 5 nm for both material
phases. The optimized designs for the input and output
couplers obtained using the described methodology are
presented in Figs. 3(b) and 3(c), respectively. For the pur-
pose of comparison we have presented the grating coupler
from [11] in Fig. 3(d).

The optimized design for the input coupler consists of
13 inclined grooves of increasing width and decreasing
depth. The optimized design represents an efficiency of
68.7% which is a approximately a factor of 0.4 higher
than the efficiency of the grating coupler from [11]. The
optimized design of the output coupler is very similar to
the optimized design of the input coupler. The output cou-
pler has an extra groove at the right side of the design do-
main resulting in a total of 14 inclining grooves, the same
number as the grating coupler from [11]. The 14th groove
is also found in the design of the input coupler at inter-
mediate steps in the optimization loop, but it disappears
in later steps. The manufacturability of the optimized de-
signs may be ensured by choosing appropriate minimum
length scales. The designs presented here are shown as
specific solutions; however, the general concept of the im-
proved efficiency by inclined grooves may inspire future
realizations of efficient grating couplers. Figure 4 shows
the absolute magnetic fields of the optimized designs for

(a) Design domain, Ωdes, is indicated by the grayscale domain.

(b) Input coupler, efficiency: 68.71%

(c) Output coupler, efficiency: 51.52%

(d) Coupler from [11], efficiency: 49.74%

100 nm

50 nm

2500 nm

Ωdes

Fig. 3. Optimized designs.
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the input and output couplers. At the end we note that the
optimized output coupler is indeed better than the re-
versed input coupler. Equal topologies for the two cases
are not expected due to different loss mechanisms in the
incoming and outgoing wave cases.

4. CONCLUSION
This paper proves that the topology optimization method
can be applied to the design of nano-photonic grating cou-
plers. Results indicate that efficiencies beyond 68% are
possible for slanted grove-based gratings. The highest re-
ported efficiency for vertical groves is 50%. The big im-
provement may warrant the development of improved
manufacturing technologies that allow slanted groves.
Future work may include topology optimization of grating
couplers for frequency ranges and variable input wave di-
rections, which will ensure more robust but probably less
efficient gratings.
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The concept of Fresnel zone plate (FZP) lenses was de-
veloped more than a century ago in the pioneering work
by Fresnel, Lord Rayleigh, Soret and Wood1. FZP lenses
work by means of diffraction instead of refraction and re-
flection and can be divided into two types, half-opaque
FZPs and phase-correcting FZPs. The first type is built
of alternating transparent and opaque concentric rings
to block out alternating Fresnel zones, whereas the latter
type is constructed to correct phases in various zones by
varying the dielectric constant or the depth of the profile.
Refractive optics cease to be effective for wavelengths

shorter than the visible spectrum until the hard X-ray
region2, because solids in this spectrum are strongly ab-
sorbing. Half opaque FZPs, however, have been shown
to work well in this spectrum3. Further, FZPs in general
are desirable as focusing devices due to their simplicity
of design, easy fabrication and low cost. FZP concepts
have spurred the development of photon sieves4 for work
with soft X-rays, which have achieved sharper image for-
mation by distributing pinholes over the Fresnel zones.
A disadvantage of the half-opaque FZP lens type is

that approximately half the energy of the incident wave
is lost, due to the opaque zones, resulting in low aper-
ture efficiency. This shortcoming can to some extent be
remedied by combining several zone plate structures as a
layered FZP5,6 or by using a reflector based FZP7.
Several design methodologies have been developed to

give the FZP special features such as designing dual-band
FZPs8, bifocal FZPs9 and non-planar shaped FZPs7.
Furthermore, the spatial distribution of either opaque
material (for half-opaque FZPs) or dielectric material
(for phase-correcting FZPs) calls for an optimization
technique and several optimization methodologies have
been reported10–12 using search algorithms in the two
first cited references and a genetic algorithm in the lat-
ter. Thus there is no lack of methodologies for designing
FZPs, however, none has yet given a methodology that
can handle a broad spectrum of features in one combined

a)Electronic mail: jban@mek.dtu.dk

approach.
We will, in this work, show that efficient half-opaque

FZP lenses can be designed using gradient-based topol-
ogy optimization13 and optimized examples of single
layer, multiple layer, broad-band, multiple foci, reflector-
based and convex-shaped FZPs are presented to show the
strength and versatility of this new design methodology.
A planar FZP lens is traditional designed using a sim-

ple formula derived from geometric-optics14

rn =

√
2nfλ

P
+

(
nλ

P

)2

(1)

where rn is the radius from the focal axis to the outer
edge of the n’th zone, n is the zone number, f is the
focal length, λ is the wave-length and P is the num-
ber of phase corrections (P = 2 for a half-opaque FZP).
However, Eq. 1 is not optimal and a more efficient de-
sign is achieved by compressing the zone plate radially
using a scalar coefficient k less than unity r

new

n
= k rn

where k = 0.98 was found to yield a higher efficiency for
the half-opaque FZP7. This motivates us to develop an
optimization technique that can find optimized designs
that take into account the spatial position of the opaque
rings.

The wave incident on the FZP is given as an Ez-
polarized plane wave. The wave problem is governed
by Maxwell’s equation in time-harmonic form and can
be reformulated into a scalar Helmholtz equation for the
Ez-polarized wave in free-space. We choose to solve the
boundary value problem using the finite element method
(FEM)15,16. A scattered-field formulation is used in or-
der to reduce the dispersion error. The infinite domain is
truncated by a Perfectly Matched Layer (PML) domain
backed up by a first order absorbing boundary condition
(ABS)15 as an approximation to the Sommerfeld radia-
tion condition. The opaque rings of the FZP can be mod-
eled as perfect electrically conducting (PEC) boundaries.
The idea of the presented optimization algorithm is to

be able to continuously vary, between full transmission
and opacity in each element at a design boundary. To
do so, the design boundary is modeled by a transition
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FIG. 1. Computational Domain.

boundary condition? for an Ez or Hz polarized wave,
which respectively can be formulated as

ηn× (H1 −H2) + Ez = 0 (2)

ηn× (E1 −E2) + n×E1 = 0 (3)

where η is the surface impedance. When η → ∞ Eq.
2 and 3 mimic full transmission and when η = 0 Eq.
2 and 3 is equivalent to the PEC condition (opaque).
This property of the transition boundary conditions can
be exploited in the topology optimization approach us-
ing a density method13. A design variable, ρe ∈ [0; 1]
, for each boundary element is introduced as a relative
element material density in order to interpolate between
opacity and full transmission mimicked by η

min = 10−2

and η
max = 106, respectively. Due to the big difference

in orders of magnitude, a power interpolation function17

is used

ηe(ρe) = 10[log10(η
min

)ρe+log
10

(η
max

)(1−ρe)] (4)

A density filter18−20 is introduced to aid realizations of
the optimized designs by enforcing a minimum length
scale on the design. Additionally a volume constraint is
imposed.
Intermediate values of the impedance in the final de-

sign are in this problem not physically sound or realiz-
able. In order to convert the converged continuous design

(a) (b)

(d)(c)

FIG. 2. Computational Domain.

into a binary zone plate, we impose a threshold value of
ηthreshold = 102. I.e. all elements with η > ηthreshold →
η = η

max and η ≤ ηthreshold → η = η
min.

In order to focus the electromagnetic radiation, the ob-
jective is to maximize the norm of the total field at the
specified focal point, as follows.

Φ =
1

Φ0

EzEz (5)

where the bar denotes the complex conjugate and Φ0 is
the norm of the electric field at the specified focal point
when no FZP is present. The reference value, Φ0, is
included in order to make the objective dimensionless as
well as easy to interpret. The gradient-based optimiza-
tion routine, method of moving asymptotes (MMA)21,
is applied to update the design in an iterative approach.
The sensitivities are obtained using the adjoint method22.

NUMERICAL EXAMPLES
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